

Protocol API

DeviceNet Slave

V5.4.0

Hilscher Gesellschaft für Systemautomation mbH
www.hilscher.com

DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public

Introduction 2/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Table of contents

1 Introduction ... 5
1.1 About this document .. 5
1.2 List of revisions .. 5
1.3 System requirements ... 6

1.3.1 System requirements for firmware generation V5 ... 6
1.4 Intended audience .. 6
1.5 Technical data .. 7
1.6 Terms, abbreviations, definitions ... 8
1.7 References to documents .. 9

2 DeviceNet Slave features ... 10
2.1 Structure of the stack ... 10
2.2 CIP Introduction ... 12

2.2.1 Object classes ... 12
2.2.2 Class attributes .. 13
2.2.3 Instance attributes ... 14
2.2.4 Services ... 14
2.2.5 CIP definitions ... 15

2.2.5.1 CIP defined Service Codes .. 15
2.2.5.2 CIP defined Class IDs .. 16
2.2.5.3 CIP defined General Status Codes ... 16
2.2.5.4 CIP defined Extended Status Codes .. 17

2.3 Object classes .. 18
2.3.1 Identity Object (Class Code: 0x01) .. 19

2.3.1.1 Class attributes ... 19
2.3.1.2 Instance attributes .. 19
2.3.1.3 Common services ... 20

2.3.2 Message Router Object (Class Code: 0x02) ... 21
2.3.2.1 Class attributes ... 21
2.3.2.2 Instance attributes .. 21
2.3.2.3 Common services ... 22

2.3.3 DeviceNet Object (Class Code: 0x03) ... 23
2.3.3.1 Class attributes ... 23
2.3.3.2 Instance attributes .. 23
2.3.3.3 Common services ... 24
2.3.3.4 Object-specific services .. 24

2.3.4 Assembly Object (Class Code 0x04) ... 25
2.3.4.1 Class attributes ... 25
2.3.4.2 Instance attributes .. 25
2.3.4.3 Common services ... 26

2.3.5 Connection Object (Class Code: 0x05) ... 26
2.3.5.1 Class attributes ... 26
2.3.5.2 Instance attributes .. 27
2.3.5.3 Common services ... 28
2.3.5.4 Specific attributes ... 28

2.3.6 Acknowledge Handler Object (Class Code 0x2B) ... 29
2.3.6.1 Class attributes ... 29
2.3.6.2 Instance attributes .. 29
2.3.6.3 Common services ... 30

2.3.7 IO Mapping Object (Class Code: 0x402) ... 31
2.3.7.1 Class attributes ... 31
2.3.7.2 Instance attributes .. 31
2.3.7.3 Common services ... 32
2.3.7.4 Instance attribute values ... 32

2.3.8 Module and Network Status Object (Class Code: 0x404).. 33
2.3.8.1 Class attributes ... 33
2.3.8.2 Instance attributes .. 33
2.3.8.3 Common Services .. 34
2.3.8.4 Instance attribute values ... 34

2.4 Hilscher-specific CIP services .. 36
2.4.1 Common .. 36

2.4.1.1 Attribute Option Flags ... 36
2.4.1.2 Get Attribute Option Flags .. 40
2.4.1.3 Set Attribute Option Flags .. 40

Introduction 3/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.4.1.4 Attribute update Notify vs. Forward .. 41
2.4.2 Identity Object ... 43

2.4.2.1 Modify Identity Status Attribute ... 43
3 Getting started .. 46

3.1 Loadable Firmware (LFW) ... 46
3.2 Process data direction convention ... 47
3.3 Cyclic data exchange ... 48

3.3.1 IO Exchange – Free Run ... 49
3.3.2 IO Exchange – RX Data Received .. 51
3.3.3 IO Exchange – Application synchronized POLL.Rsp ... 53

3.4 Acyclic data exchange ... 55
3.5 Configuration methods ... 56

3.5.1 Basic packet configuration set ... 56
3.5.2 Extended packet configuration set .. 57
3.5.3 Data base configuration ... 58

3.6 Host application behavior ... 59
3.6.1 Startup ... 60
3.6.2 Configuration ... 60
3.6.3 Operational .. 60
3.6.4 Reset ... 60

3.7 Remanent data ... 61
3.7.1 Remanent data responsibility .. 61
3.7.2 Remanent data state ... 62
3.7.3 Remanent data handling ... 62
3.7.4 Remanent data values... 62

3.8 Device data .. 64
3.8.1 Device Serial Number .. 65

4 Application interface .. 66
4.1 Service overview .. 66
4.2 Configuration services .. 67

4.2.1 Basic configuration sequence .. 67
4.2.2 Set Configuration service .. 69

4.2.2.1 Set Configuration request ... 69
4.2.2.2 Set Configuration confirmation ... 74

4.2.3 Create Assembly service ... 75
4.2.3.1 Create Assembly request ... 75
4.2.3.2 Create Assembly confirmation .. 76

4.3 Explicit Messaging services ... 77
4.3.1 General .. 77
4.3.2 CIP Service sent from application ... 78

4.3.2.1 CIP Service request .. 79
4.3.2.2 CIP Service confirmation .. 80

4.3.3 Register Class Service .. 81
4.3.3.1 Register Class request ... 82
4.3.3.2 Register Class confirmation .. 85

4.3.4 Unregister Class service .. 86
4.3.4.1 Unregister Class request .. 86
4.3.4.2 Unregister Class confirmation... 87

4.3.5 CIP Service sent by a master .. 88
4.3.5.1 CIP Service indication .. 89
4.3.5.2 CIP Service response ... 90

4.3.6 Reset service ... 91
4.3.6.1 Reset indication .. 92
4.3.6.2 Reset response .. 95

4.4 Diagnostic service .. 96
4.4.1 Diag service ... 96

4.4.1.1 Diag request ... 97
4.4.1.2 Diag confirmation .. 98

4.5 Hilscher common services ... 106
4.5.1 Channel Init ... 106
4.5.2 Register / Unregister Application ... 106
4.5.3 Get / Set Watchdog Time .. 106
4.5.4 Delete Config ... 106
4.5.5 Start / Stop Communication ... 107
4.5.6 Lock / Unlock Configuration ... 107
4.5.7 Get DPM I/O Information ... 107
4.5.8 Get / Set Trigger Type ... 107

Introduction 4/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.5.9 Firmware Identification .. 107
4.5.10 Set Remanent Data ... 108
4.5.11 Store Remanent Data Indication ... 108

5 Status information .. 109
5.1 Common status .. 109

5.1.1 DPM Communication status .. 109
5.1.2 DPM Status bits ... 110

5.2 Extended status ... 110
5.3 Process data status .. 111

5.3.1 Run / Idle status .. 111
5.3.2 Sequence counter ... 112

6 Feature configuration via tag list .. 113

7 Status and error codes .. 114
7.1 Common status codes ... 114
7.2 Generic AP ... 120
7.3 DeviceNet Slave stack ... 122

8 Appendix ... 123
8.1 List of figures .. 123
8.2 List of tables ... 123
8.3 Legal Notes .. 125
8.4 Contacts ... 129

Introduction 5/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

1 Introduction
1.1 About this document
This manual describes the application interface of the DeviceNet Slave stack V5.4 for netX-based
products. The aim of this manual is to support the integration of devices based on the netX chip
into own applications.

1.2 List of revisions
Rev Date Name Revisions

1 2020-02-26 MIK Document created.

2 2021-03-30 MIK Firmware/stack version V4.1/V5.1

Section Technical data: Max. I/O data and max. Acyclic data corrected.

Section DeviceNet Object (Class Code: 0x03): More info about attribute 8 and 9.

Section DeviceNet Object (Class Code: 0x03): Default value of attribute 5
corrected.

Section DPM Communication status State Diagram improved.

3 2022-02-16 MIK, HHE Firmware/stack version V4.2/V5.2

Section System requirements updated.

Add new section Diagnostic service

Section Reset service: Support of reset type 2 and user reset types.

Add new section Device data: Setting the serial number via OEM parameter.

4 2023-02-07 MIK, RGO Firmware/stack version V5.3

Correct sizeof() len description in service DNS_DIAG_REQ

Section ‘Set Configuration request’ allow a configuration of device type value 0

Section ‘Set Configuration request’ new message body formats 8/16; 16/16; 16/8

Section ‘Hilscher-specific CIP services’ add detailed table of attribute option flags

Section ‘Hilscher-specific CIP services’ add notify and forward seq. diagram

Section ‘Hilscher-specific CIP services’ new service ‘Modify Status’

Section ‘Reset service’ add new reset reason

5 2023-04-04 MIK, HHE Firmware/stack version V5.4.0

Section Process data status new sequence counter.

Section Message Router Object (Class Code: 0x02) access from network.

Section Set Configuration request individual disabling of IO connections.

Section Modify Identity Status Attribute ID Attribute 5 Configured Bit 2 is settable.

Section Attribute Option Flags Class attributes can be hidden.

Section Acknowledge Handler Object (Class Code 0x2B) disabling.

Section Get / Set Trigger Type add new supported trigger type.

Section Cyclic data exchange new exchange modes and additional description.

Table 1: List of revisions

Introduction 6/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

1.3 System requirements
1.3.1 System requirements for firmware generation V5
The software package has the following system requirements to its environment: netX 90 Chip as
CPU hardware platform.

Compatibility between DeviceNet Slave firmware/stack and netX 90

Starting with version 5.2.0, the firmware/stack requires netX 90 with date code 1910 and later. If a
NXHX 90-JTAG is used, hardware revision 4 or higher is required.

netX 90 samples (date code before 1910) are no longer supported which is the case for NXHX 90-
JTAG hardware revision 3 or lower.

Maintenance Firmware

The firmware/stack requires Maintenance Firmware V1.4.0.0 (or higher).

1.4 Intended audience
This manual is suitable for software developers with the following background:

 Knowledge of the programming language C

 Knowledge of the DeviceNet protocol

 Knowledge of the ODVA’s CIP protocol

Introduction 7/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

1.5 Technical data
The data below applies to DeviceNet Slave stack version V5.4.0.

Technical data

Feature Parameter
Maximum number of cyclic input data 255 bytes
Maximum number of cyclic output data 255 bytes
Acyclic communication as server Max. 255 bytes per request
Baud rate 125 kBits/s, 250 kBit/s, 500 kBit/s

Automatic baud rate detection is not supported
Connection establishment Predefined Master/Slave Connection Set
IO Connections Poll

ChangeOfState
Cyclic
Bit-strobe

Explicit messaging Supported
Fragmentation Explicit and I/O
Message body format 8/8; 8/16; 16/8; 16/16;
Data transport layer CAN

Table 2: Technical Data DeviceNet Slave

Firmware available for netX

netX Available
netX 90 yes (V5)

Table 3: Firmware available for netX

Configuration

 Packet API based configuration by host application

 Data base configuration by configuration tool

Diagnostic

 Common and extended diagnostic via dual port memory

 Stack diagnosis via Packet API

Limitations

 UCMM (Unconnected Message Manager) is not supported

 Quick Connect is not supported

Introduction 8/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

1.6 Terms, abbreviations, definitions
Term Description
AP Application on top of the Stack
ASCII American Standard Code for Information Interchange
BOI Bus-off interrupt
CAN Controller Area Network
CIP Common Industrial Protocol
COS Change of State
DDP Device Data Provider
DL Data Link (Layer)
DNS DeviceNet Slave
DPM Dual Port Memory
FDL Flash Device Label
LFW Loadable Firmware
LSB Least Significant Byte
MAC ID Media Access Control Identifier (i.e. address of a DeviceNet device)
MSB Most Significant Byte
ODVA Open DeviceNet Vendors Association
UCMM Unconnected Message Manager
GRC General Error Code
ERC Extended Error Code

Table 4: Terms, abbreviations and definitions

Introduction 9/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

1.7 References to documents
This document refers to the following documents:

[1] Hilscher Gesellschaft für Systemautomation mbH: Dual-Port Memory Interface Manual, netX
Dual-Port Memory Interface, Revision 17, English, 2020.

[2] Hilscher Gesellschaft für Systemautomation mbH: Packet API, Packet-based services (netX
10/50/51/52/100/500), Revision 5, English, 2021.

[3] Hilscher Gesellschaft für Systemautomation mbH: Packet API, netX Dual-Port Memory,
Packet-based services (netX 90), Revision 6, English, 2021.

[4] Hilscher Gesellschaft für Systemautomation mbH: Programming reference guide, CIFX API,
Revision 09, English, 2020.

[5] ODVA: The CIP Networks Library, Volume 1, “Common Industrial Protocol (CIP™)”, Edition
3.28, April 2020.

[6] ODVA: The CIP Networks Library, Volume 3, “DeviceNet Adaptation of CIP”, Edition 1.15,
November 2018.

[7] Hilscher Gesellschaft für Systemautomation mbH: Operating Instruction Manual, DTM for
Hilscher DeviceNet Slave Devices, Configuration of Hilscher Slave Devices, Revision 12,
English, 2019.

[8] Hilscher Gesellschaft für Systemautomation mbH: Operating Instruction Manual, Tag List
Editor V1.5.

Table 5: References to documents

DeviceNet Slave features 10/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2 DeviceNet Slave features
2.1 Structure of the stack

Figure 1: Structure of the DeviceNet Slave stack

Generic AP

The generic AP is a Hilscher common component, which handles the DPM interface on front side.
On the backend, it provides a generic communication interface named GCI, which is the common
interface where all stacks have to adapt to.

Generic AP adapter

The generic AP adapter binds the ‘DeviceNet’ interface to the backend interface of the ‘Generic
AP’. It is responsible for:

 Handling packets received from the application to the stack

 Handling indication from stack to the application

 Provide information about connection state

 Preparation of configuration data

DeviceNet Slave features 11/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

DeviceNet Core

The DeviceNet core component is the main part of the DeviceNet Slave stack. This component is
responsible:

 Object handling of the DeviceNet Slave stack according the CIP object model

 Connection management

 Network access state machine

CAN DL

The CAN DL component is responsible for sending and receiving CAN frames to underlying CAN
hardware layer.

DeviceNet Slave features 12/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.2 CIP Introduction
2.2.1 Object classes
Speaking of CIP object classes means to distinguish between class and instance level. Each
object exists at class level and, additionally, may have one or more instances. CIP services
address a certain object class or instance by means of a specified Instance ID. An Instance ID
value of zero addresses the object class, whereas Instance IDs larger than zero address the
corresponding instance of that object class.

Each CIP object class and instance consists of a set of attributes and services. Naturally, the
attributes each object class provides at class and instance levels are different from each other. The
most common services are the Get_Attribute_Single and Set_Attribute_Single services to read or
write the attributes of the addressed object class or instance.

The following sections uses four tables to describe each supported object class:

1. Class attributes.

2. Instance attributes.

3. Services available to the host application.

4. Services available to DeviceNet master over the network.

DeviceNet Slave features 13/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.2.2 Class attributes
Class Attributes are defined using the following notation:

Class Attributes (Instance 0)

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 2 3 4 5 6 7
Table 6: Introduction of Class Attribute Description

1. The Attribute ID is an integer identification value assigned to an attribute. Use the Attribute
ID in the Get_Attributes and Set_Attributes services list. The Attribute ID identifies the
particular attribute being accessed.

2. Name specifies the name of the class attribute.

3. Access from Network specifies the access permission of the attribute when the service is
sent from the DeviceNet network. The definitions are:

 Set (Settable) - The attribute is accessible by at least one of the set services
(Set_Attribute_Single/ Set_Attribute_All).

 Get (Gettable) - The attribute is accessible by at least one of the get services
(Get_Attribute_Single/ Get_Attribute_All).

4. Access from Host specifies the access permission of the attribute when the service is sent
from the Host Application using the DPM/Packet Interface. The definitions for access rules
are:

 Set (Settable) - The attribute is accessible by at least one of the set services
(Set_Attribute_Single/ Set_Attribute_All).

 Get (Gettable) - The attribute is accessible by at least one of the get services
(Get_Attribute_Single/ Get_Attribute_All).

5. Description contains a descriptive text on the attribute.

6. Default value specifies the default value of the attribute.

7. Supported by default indicates whether this attribute is supported by the stack in a default
configuration.

In a default configuration, the DeviceNet Slave stack implements certain attributes, which are
not accessible from the DeviceNet network. In order to access these attributes via the
network, the host application has to activate them using a specific service “Set Attribute
Option”. See section Attribute Option Flags on page 36 and Set Attribute Option on page 40).

 The attribute is supported and activated per default.

 The attribute is supported and deactivated per default. The host can activate it.

 The attribute is not supported. The host cannot activate it.

DeviceNet Slave features 14/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.2.3 Instance attributes
An Instance Attribute is an attribute that is specific to an object class instance. Instance Attributes
are defined in the same notation as Class Attributes.

Instance Attributes (Instance [1..N])

Attr
ID

Name

Access

Description
Default
Value

Supported
by default from

Network
from
Host

1 2 3 4 5 6 7
Table 7: Introduction of Instance Attribute Description

2.2.4 Services
Services can either address the class level (Instance ID 0) or the instance level (Instance ID [1..N])
of a CIP object. Services may be issued either by the host application or by a client on the
DeviceNet network.

Correspondingly, we will present services supported by each object class in two tables:

The first table shows common services that can be issued toward the protocol stack over the
network, as well as by the host application. The second table shows Hilscher-specific services that
are available to the host application only.

Both tables have the same format:

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

1 2 3 4 5
Table 8: Introduction of Service Description

1. Service Code is a hexadecimal value to identify the CIP service uniquely. Service codes
below the value 255 are defined within the DeviceNet specification. Larger numbers are
reserved for Hilscher-specific services. Hilscher-specific services are described separately in
section Hilscher-specific CIP services on page 36.

2. Name specifies the name of the service.

3. Addressing the object’s class level

 The stack supports this service at object class level (Instance ID 0).

 The stack does not support this service at class level.

4. Addressing the object’s instance level

 The stack supports this service at object instance level (instance 1-n).

 The stack does not support this service at instance level.

5. Description contains descriptive text on the service.

DeviceNet Slave features 15/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.2.5 CIP definitions

2.2.5.1 CIP defined Service Codes

The following service codes are pre-defined by the CIP specification [5], Chapter A-3 CIP Common
Services, Table A-3.1.

Service code Service name
0x00 Reserved
0x01 Get_Attributes_All
0x02 Set_Attributes_All
0x03 Get_Attribute_List
0x04 Set_Attribute_List
0x05 Reset
0x06 Start
0x07 Stop
0x08 Create
0x09 Delete
0x0A Multiple_Service_Packet
0x0B, 0x0C Reserved for future use
0x0D Apply_Attributes
0x0E Get_Attribute_Single
0x0F Reserved for future use
0x10 Set_Attribute_Single
0x11 Find_Next_Object_Instance
0x12, 0x13 Reserved for future use
0x14 Error Response
0x15 Restore
0x16 Save
0x17 No Operation (NOP)
0x18 Get_Member
0x19 Set_Member
0x1A Insert_Member
0x1B Remove_Member
0x1C GroupSync
0x1D–0x31 Reserved for additional Common Services

Table 9: Service Codes

Note: Not every service is available on every object and on every device in the network.

DeviceNet Slave features 16/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.2.5.2 CIP defined Class IDs

The table below shows the ODVA arranged Class ID numbers according reference [6], Table 4-
10.4.

Class range Meaning
0x00 – 0x63 ODVA pre-defined objects
0x64 - 0xC7 Vendor Specific
0xC8 – 0xEF Reserved by ODVA for future use
0xF0 – 0x2FF ODVA pre-defined objects
0x500 – 0xFFFF Reserved by ODVA for future use

Table 10: Class ID ranges according CIP specification

The following table lists the predefined Class IDs, which are typically used for a simple DeviceNet
IO slave.

Class ID Object class
0x01 Identity Object
0x02 Message Router Object
0x03 DeviceNet Object
0x04 Assembly Object
0x05 Connection Object
0x2B Acknowledge Handler Object

Table 11: Predefined values for the Class ID according to the CIP specification

2.2.5.3 CIP defined General Status Codes

The following table list the common suitable general status codes to handle confirmation and
response packets for explicit massaging services in case of errors. The full list of general status
codes is listed in reference [5], Chapter B-1 General Status Codes, Table B-1.1:

General Error (GRC) Description
0 No error
2 Resources unavailable
8 Service not available
9 Invalid attribute value
11 Already in request mode
12 Object state conflict
14 Attribute not settable
15 A permission check failed
16 State conflict, device state prohibits the command execution
19 Not enough data received
20 Attribute not supported
21 Too much data received
22 Object does not exist
23 Reply data too large, internal buffer to small

Table 12: Generic Status Codes

DeviceNet Slave features 17/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.2.5.4 CIP defined Extended Status Codes

Additional Error Codes

The additional error code is network, device or object specific. If necessary, manufacturers can
individually define an additional code while implementing a service. The pre-defined additional
error codes are mentioned in various sections in references [5] and [6]. The specification says
when it has to be used. In default, the additional error code is not used.

DeviceNet Slave features 18/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3 Object classes
The DeviceNet slave stack is modeled as a collection of objects. Object modeling organizes
related data and procedures into one entity: the object. An object is a collection of related services
and attributes. Services are procedures that an object performs. Attributes are characteristics of
objects represented by values or variables. Typically, attributes provide status information or
govern the operation of an object. An object's behavior is an indication of how the object responds
to particular events.

The following collection of objects represent the object library of a DeviceNet Slave stack. The blue
colored are the main objects in the default Hilscher DeviceNet Slave stack. The grey colored
objects are Hilscher specific objects. The green colored objects are user or profile specific objects
where the user application has the option to register them within the DeviceNet Slave stack and
handle these object in the user application.

Figure 2: Objects Model of Hilscher DeviceNet Slave stack

For the general description of the Object Model of DeviceNet, see reference [6], Section 1-5
Device Object Model.

DeviceNet Slave features 19/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.1 Identity Object (Class Code: 0x01)
The Identity Object provides identification and general information about the device. The
DeviceNet protocol stack implements the Identity object at class level and a single instance with
Instance ID 1. It is used for electronic keying and by applications requiring information about the
nodes on the network.

2.3.1.1 Class attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 Revision Get Get/Set Revision of this object (1)
2 Max. Instance Get Get/Set Maximum instance number of an object

currently created in this class level of the
device

(1)

3 Number of
Instances

Get Get/Set The number of Instances currently created
in this class

(1)

6 Maximum ID
Number Class
Attributes

Get Get/Set The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number
Instance
Attributes

Get Get/Set The attribute ID number of the last instance
attribute of the class definition
implemented in the device.

(7)

Table 13: Identity Object - Class attributes

2.3.1.2 Instance attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 Vendor ID Get Get/Set Vendor Identification (0x011B)
Hilscher

2 Device Type Get Get/Set Indication of general type of product (1)
3 Product Code Get Get/Set Identification of a particular product of an

individual vendor
(1)

4 Revision Get Get/Set Revision of the product (1.1)
5 Status Get Get/Set1) Summary status of device
6 Serial Number Get Get/Set Serial number of device (1)
7 Product Name Get Get/Set Human-readable identification “netX”

Table 14: Identity Object - Instance attributes

1) The specific service “Modify Status” can be used to modify particular flags of the Status attribute,
which is described in chapter 2.4.2.1 Modify Identity Status Attribute on page 43

DeviceNet Slave features 20/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.1.3 Common services

These services are available to the host application and remote DeviceNet nodes.

Service
Code

Name Addressing the object’s Description
Class
Level

Instance
Level

0x01 Get Attribute All Retrieve all attribute values

0x05 Reset1) Reset the device

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value
1) Refer to chapter reset handling of the device

Table 15: Identity Object - Common services

DeviceNet Slave features 21/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.2 Message Router Object (Class Code: 0x02)
The Message Router Object provides a connection point for messaging through which a client can
address a service to any object class or instance within the physical device. The message router
supports class and instance attributes as described below.

2.3.2.1 Class attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 Revision Get Get Revision of this object (1)
2 Max. Instance Get Get Maximum instance number of an object

currently created in this class level of the
device

(1)

3 Number of
Instances

Get Get The number of Instances currently created
in this class

(1)

6 Maximum ID
Number Class
Attributes

Get Get The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number
Instance
Attributes

Get Get The attribute ID number of the last instance
attribute of the class definition
implemented in the device.

(2)

Table 16: Message Router - Class attributes

2.3.2.2 Instance attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

2 Number
Available

Get Get Maximum number of connections
supported

(4)

Table 17: Message Router - Instance attributes

The default value for attribute 2 “Number Available” is 4 which means that the stack is configured
per default to allow all types of IO connections POLL + STROBE + COS/CYC. The stack allows
disabling IO connections individual (see section Set Configuration request on page 69). For each
disabled IO connection the value of “Number Available” is decremented by 1. A value of 1 means
that an explicit connection is allowed only.

DeviceNet Slave features 22/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.2.3 Common services

These services are available to the host application and remote DeviceNet nodes.

Service
Code

Name Addressing the object’s Description
Class
Level

Instance
Level

0x0E Get Attribute Single Retrieve attribute value

Table 18: Message Router - Common services

DeviceNet Slave features 23/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.3 DeviceNet Object (Class Code: 0x03)
The DeviceNet Object contains information about the configured DeviceNet Slave. For example, it
holds the MAC ID, the Baud rate, the switch values etc.

2.3.3.1 Class attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 Revision Get Get/Set Revision of this object (2)
2 Max. Instance Get Get/Set Maximum instance number of an object

currently created in this class level of the
device

(1)

3 Number of
Instances

Get Get/Set The number of Instances currently created
in this class

(1)

6 Maximum ID
Number Class
Attributes

Get Get/Set The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number
Instance
Attributes

Get Get/Set The attribute ID number of the last instance
attribute of the class definition
implemented in the device.

(9)

Table 19: DeviceNet Object - Class attributes

2.3.3.2 Instance attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 MAC ID Get/Set Get/Set Node ID of the device that it is currently
operational on the network

(63)

2 Baudrate Get/Set Get/Set Baud Rate of the device that it is currently
operational on the network

0

3 BOI Get/Set Get/Set Bus-Off Interrupt behavior 0
4 Bus-Off Counter Get/Set Get/Set Number of times CAN went to the bus–off

state
0

5 Object
Allocation
Information

Get Get Connection allocation information and
MAC ID of Master (from Allocate)

0, 255

6 MAC ID Switch
Changed

Get Get The Node Address Switch has changed
since last power – up/reset.

0

7 Baud Rate
Switch Changed

Get Get The Baud Rate Switch has changed since
last power – up/reset.

0

8 MAC ID Switch
Value

Get Get/Set Current value of Node Address Switch 0

9 Baud Rate
Switch Value

Get Get/Set Current value of Baud Rate switch 0

Table 20: DeviceNet Object - Instance attributes

Continued on next page.

DeviceNet Slave features 24/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

 Attribute 6 and 8 are only present if the MAC ID has been set via a switch.

 Attribute 7 and 9 are only present if the baud rate has been set via a switch.

 Attribute 6 and 7 are updated by the stack implicit, when the host modify attribute 8 and 9

 Attribute 8 contains the actual value (position) of the physical ‘Node Address Switch’. At
startup, it is the same value as attribute 1. During runtime, the value in attribute 8 can differ
from the value in attribute 1 (MAC ID the device is currently online in the network). If the
stack controls the ‘Node Address Switch’ (the switch is bound to the netX hardware), then
the stack reads the switch value from the hardware at startup. During runtime, the stack
updates attribute 8 in case the switch value has been changed. If the host controls the ‘Node
Address Switch’ (the switch is bound to the host hardware), then the host application has to
update (Set) attribute 8 in case the switch value changes at runtime on the host hardware.

 Attribute 9 contains the current value (position) of the physical ‘Baud Rate Switch’. At startup,
it is the same value as attribute 2. During runtime, the value in attribute 9 can differ from the
value in attribute 2 (Baud rate the device is currently online to the network). If the stack
controls the ‘Baud Rate Switch’ (the switch is bound to the netX hardware), then the stack
reads the switch value from the hardware at startup. During runtime, the stack updates
attribute 9 in case the switch value has been changed. If the host controls the ‘Baud Rate
Switch’ (the switch is bound to the host hardware), then the host application has to update
(Set) attribute 9 in case the switch value changes at runtime on the host hardware.

2.3.3.3 Common services

These services are available to the host application and remote DeviceNet nodes.

Service
Code

Name Addressing the object’s Description
Class
Level

Instance
Level

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value

Table 21: DeviceNet Object - Common services

2.3.3.4 Object-specific services

These services are only available for a remote DeviceNet node (master) for connection handling.

Service
Code

Name Addressing the object’s Description
Class
Level

Instance
Level

0x4B Allocate_Master/Slave_
Connection_Set

 Requests the use of the Predefined
Master/Slave Connection Set.

0x4C Release_Master/Slave_
Connection_Set

 Indicates that the specified Connections
within the Predefined Master/Slave
Connection Set are no longer desired.
These Connections are to be released
(Deleted).

Table 22: DeviceNet Object - Specific services

DeviceNet Slave features 25/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.4 Assembly Object (Class Code 0x04)
The Assembly objects in the Hilscher DeviceNet Slave stack are created at configuration phase.
The Hilscher preferred default instance of the Assembly object is 100 (0x64) for consuming data
and 101 (0x65) for producing data, but the instance numbers are also configurable.

2.3.4.1 Class attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 Revision Get Get/Set Revision of this object (2)
2 Max. Instance Get Get/Set Maximum instance number of an object

currently created in this class level of the
device

(0)

3 Number of
Instances

Get Get/Set The number of Instances currently created
in this class

(0)

6 Maximum ID
Number Class
Attributes

Get Get/Set The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number
Instance
Attributes

Get Get/Set The attribute ID number of the last instance
attribute of the class definition
implemented in the device.

(4)

Table 23: Assembly Object - Class attributes

2.3.4.2 Instance attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 Number of
Member

 Get Number of members in List n.a.

2 Member Get Member list n.a.
3 Data Get/Set Get/Set Current process data snapshot n.a.
4 Size Get Get/Set Process data size in number of bytes n.a.

Table 24: Assembly Object - Instance attributes

DeviceNet Slave features 26/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.4.3 Common services

These services are available to the host application and remote DeviceNet nodes.

Service
Code

Name Addressing the object’s Description
Class
Level

Instance
Level

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value

0x18 Get Member Get a member of instance attribute 2

Table 25: Assembly Object - Common services

2.3.5 Connection Object (Class Code: 0x05)
The Connection Object can have up to four instances. Each instance has a dedicated relation to a
specific connection type. The Connection Object holds information about the current connection
status, connection-timing parameter and information to the assigned assembly object.

 Instance 1 references the Explicit Messaging connection,

 Instance 2 references the Poll connection

 Instance 3 references the Bit Strobe connection

 Instance 4 references the Change of State / Cyclic connection

2.3.5.1 Class attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 Revision Get Get Revision of this object (1)
2 Max. Instance Get Get Maximum instance number of an object

currently created in this class level of the
device

(4)

3 Number of
Instances

Get Get The number of Instances currently created
in this class

(0 … 4)

6 Maximum ID
Number Class
Attributes

Get Get The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number
Instance
Attributes

Get Get/Set The attribute ID number of the last instance
attribute of the class definition
implemented in the device.

(101)

Table 26: Connection Object - Class attributes

DeviceNet Slave features 27/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.5.2 Instance attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 State Get Get Connection State 0
2 Type Get Get Indicates either I/O or Messaging

Connection
0

3 Transport Type Get Get Defines behavior of the Connection 0
4 Produced

Connection ID
Get Get Placed in CAN Identifier Field when the

Connection transmits.
0

5 Consumed
Connection ID

Get Get CAN Identifier Field value that denotes
message to be received.

0

6 Initial Com
Characteristics

Get Get Defines the Message Group(s) across
which productions and consumptions
associated with this Connection.

0

7 Produced
Connection
Size

Get Get Maximum number of bytes transmitted
across this Connection

0

8 Consumed
Connection
Size

Get Get Maximum number of bytes received across
this Connection

0

9 Expected
Packet Rate

Get/Set Get Defines timing associated with this
Connection

0

12 Timeout Action Get/Set Get Defines how to handle Inactivity/Watchdog
timeouts

0

13 Produced Path
Length

Get Get Number of bytes in the Produced
Connection Path attribute

0

14 Produced
Connection
Path

Get Get Produced Connection Path 0

15 Consumed
Path Length

Get Get Number of bytes in the Consumed
Connection Path attribute

0

16 Consumed
Connection
Path

Get Get Consumed Connection Path 0

17 Inhibit Time Get/Set Get Defines minimum time between new data
production

0

100 Consume
Assembly
Instance

Get/Set Get/Set Hilscher specific attribute pointing to the
consuming assembly instance for this
connection.

0

101 Produce
Assembly
Instance

Get/Set Get/Set Hilscher specific attribute pointing to the
producing assembly instance for this
connection.

0

Table 27: Connection Object - Instance attributes

DeviceNet Slave features 28/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.5.3 Common services

These services are available to the host application and remote DeviceNet nodes.

Service
Code

Name Addressing the object’s Description
Class
Level

Instance
Level

0x05 Reset Reset a connection

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value

Table 28: Connection Object - Common services

2.3.5.4 Specific attributes

The connection object supports two additional attributes 100 and 101 in the instance level of the
object. These are Hilscher specific in the user range of attributes.

These attributes are used to hold the assembly instance that produces or consume the IO data for
the associated connection. The sense of this attributes is to allow the user (from host application)
or from the network side to bind the connections to different assembly objects.

Connection

Object
Instance

Default value
Attr 100
(consume)

Default value
Attr 101
(produce)

Note

1 none none This instance relates to the explicit message connection. The
explicit message connection has no binding to an assembly
object. Therefore the attributes are not existent for instance 1.

2 100 *) 101 *) This instance relates to the “Poll connection”. The value of
attribute 100 is the default value of the output assembly
instance. The value of attribute 101 is the default input assembly
instance.

3 0 101 *) This instance relates to the “Bit Strobe” connection. The default
value for attribute 100 is 0 and cannot be changed. Because the
‘Bit Strobe’ connection does not has consuming data. The
default value for attribute 101 is the same as for the poll
connection and produces per default the same data like the poll
connection.

4 0 101*) This instance relates to the “COS / Cyclic” connection. The
default value for attribute 100 is 0 and cannot be changed. The
consume assembly of the COS / Cyclic connection is always the
same like from the poll connection.

Table 29: Predefined Connection Object - Instance attributes default values

*) The attribute default values are the default configured assembly instances which are configured
with the set configuration packet.

The attribute values can only be set to existing assembly object. In opposite to the default
attributes of the connection object the existence of these Hilscher specific attributes are not bound
to the allocation of the connection object itself. This is required to allow a master to write these
attributes at configuration phase before allocating the connection.

DeviceNet Slave features 29/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.6 Acknowledge Handler Object (Class Code 0x2B)

2.3.6.1 Class attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 Revision Get Get Revision of this object (1)
2 Max. Instance Get Get Maximum instance number of an object

currently created in this class level of the
device

(1)

3 Number of
Instances

Get Get The number of Instances currently created
in this class

(1)

6 Maximum ID
Number Class
Attributes

Get Get The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number
Instance
Attributes

Get Get/Set The attribute ID number of the last instance
attribute of the class definition
implemented in the device.

(3)

Table 30: Acknowledge Handler Object - Class attributes

2.3.6.2 Instance attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 Acknowledge
Timer

Get/Set Get Time to wait for acknowledge before
resending

16

2 Acknowledge
Handler
Retry Limit

Get Get Number of Ack Timeouts to wait before
informing the producing application of a
RetryLimit_Reached event.

1

3 COS
Producing
Connection
Instance

Get Get Connection Instance which contains the
path of the producing I/O application object
which will be notified of Ack Handler
events.

4

Table 31: Acknowledge Handler Object - Instance attributes

DeviceNet Slave features 30/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.6.3 Common services

These services are available to the host application and remote DeviceNet nodes.

Service
Code

Name Addressing the object’s Description
Class
Level

Instance
Level

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value

Table 32: Acknowledge Handler Object - Common services

Note: The Acknowledge Handler Object will be disabled automatically when the both connection
types COS and CYC are disabled. Disabling the object means, it is not existent and from the
network any more. Connection types can be disabled as described in section Set Configuration
service on page 69.

DeviceNet Slave features 31/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.7 IO Mapping Object (Class Code: 0x402)
The IO Mapping Object is responsible for partitioning of the DPM I/O input and output areas and
mapping of those partitions, i.e. members, to the related instances of the Assembly object. This is
a Hilscher-specific CIP object, which is not covered by the CIP specification. For each created
assembly object, a corresponding IO mapping object is created automatically within the stack. This
object is intended for internal management of the stack. There is no usage for the application of
this object.

2.3.7.1 Class attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 Revision None Get Revision of this object (1)
2 Max. Instance None Get Maximum instance number of an object

currently created in this class level of the
device

(n)

3 Number of
Instances

None Get The number of Instances currently created
in this class

(n)

6 Maximum ID
Number Class
Attributes

None Get The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number
Instance
Attributes

None Get The attribute ID number of the last instance
attribute of the class definition
implemented in the device.

(4)

Table 33: IO Mapping Object - Class attributes

2.3.7.2 Instance attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 Status None Get Status of I/O data (Data direction) (0)
2 Length None Get Length of I/O data (0)
3 Data None None I/O data (0) *)
4 Offset None None Offset within the corresponding DPM area (0) *)

Table 34: IO Mapping Object - Instance attributes

*) These attribute data cannot be accessed from host application.

DeviceNet Slave features 32/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.7.3 Common services

These services are available to the host application and remote DeviceNet node.

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value
Table 35: IO Mapping Object - Common services

2.3.7.4 Instance attribute values

Value of

Status

Attribute

Define Meaning

0x0000 CIP_OBJECT_IO_MAP_STATUS_FREE The instance is not bound.
0x0001 CIP_OBJECT_IO_MAP_STATUS_PRODUCER The instance is bound to an input assembly

instance and the output image of the DPM.
0x0002 CIP_OBJECT_IO_MAP_STATUS_CONSUMER The instance is bound to an output assembly

instance and the input image of the DPM.
Table 36: IO Mapping Object – ‘Status’ attribute values

DeviceNet Slave features 33/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.8 Module and Network Status Object (Class Code: 0x404)
The Module Network status object is a Hilscher specific object. This object reflects the Module
Status and the Network Status as it is described in the DeviceNet specification [5] Chapter 9:
Indicators & Middle Layers. The host application can use this object to implement its own LED
handling by deriving the corresponding LED state from the status information.

2.3.8.1 Class attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 Revision None Get Revision of this object (1)
2 Max. Instance None Get Maximum instance number of an object

currently created in this class level of the
device

(1)

3 Number of
Instances

None Get The number of Instances currently created
in this class

(1)

6 Maximum ID
Number Class
Attributes

None Get The attribute ID number of the last class
attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number
Instance
Attributes

None Get The attribute ID number of the last instance
attribute of the class definition
implemented in the device.

(2)

Table 37: Module Network Status Object - Class attributes

2.3.8.2 Instance attributes

Attr
ID

Name Access Description Default
Value

Supported
by default from

Network
from
Host

1 Module Status None Get Module State, (according DeviceNet Spec.
[5] Chapter 9-2-2)

0

2 Network Status None Get Network State, (according DeviceNet
Spec. [5] Chapter 9-2-3)

0

Table 38: Module Network Status Object - Instance attributes

DeviceNet Slave features 34/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.3.8.3 Common Services

These services are available to the host application.

Service
Code

Name Addressing the object’s Description

Class
Level

Instance
Level

0x01 Get Attribute All Retrieve all attribute value

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value
Table 39: Module Network Status Object - Common services

2.3.8.4 Instance attribute values

Value of
Module
Status

Meaning MS LED state

0 No Power The LED should be off.
1 Self-Test

The device is performing its power-on self-testing
procedure.

The LED should performing the testing blink
sequence.

2 Standby
The device has not been configured.

The LED should flashing green.

3 Operate
The device is operating

The LED should be steady green.

4 Recoverable Fault
The device has a recoverable fault.

The LED should flashing red.

5 Unrecoverable Fault
The device has a non-recoverable critical fault.

The LED should steady red.

Table 40: Module Network Status Object – ‘Module Status’ attribute values

DeviceNet Slave features 35/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Value of
Network
Status

Meaning NS LED state

0 No Power The LED should be off.
1 No Connection

The node address and baud rate is configured. The
duplicate MAC ID check is performed. The device is
online to the network. However, the master did not
establish any connection.

The LED should flashing green.

2 Connected
At least one of the connections (explicit and/or IO) to
the device is established.

The LED should be steady green.

3 Connection time out
At least one connection was established and has timed
out

The LED should flashing red.

4 Critical Link Fault
The device detected an unrecoverable communication
error i.e. duplicate MAC ID or CAN Bus OFF event.

The LED should be steady red.

5 Self-Test
The device is performing its power-on self-testing
procedure.

The LED should performing the testing blink
sequence.

Table 41: Module Network Status Object – ‘Network Status’ attribute values

The host application can read out this attributes from the stack by sending the command CIP
Service request as described on page 79.

Alternative the host can register to be notified about state changes by getting CIP service
indications from the stack to the host. To register for change indications, the host has to set the
attribute option flag ‘CIP_FLG_TREAT_NOTIFY’ to attribute 1 (Module Status) of the MNS object.
Setting attribute option flags is described in section Attribute Option Flags on page 36. Registration
to attribute 2 of the MNS object is not possible.

Once registered to attribute 1 (Module Status), the stack will sent CIP Service indications to the
host with the service code CIP_SERVICE_SET_ATTRIBUTES_ALL with the current value of the
module AND the network status attribute.

Note: The stack always sends both attributes 1 and 2 together, even the notify registration is done
for attribute 1 only. Both attributes sent always together to the host with a CIP service indication
‘Set Attribute All’, even if just one data of the attributes is changed.

Note: The initial state of the Module Status and the Network Status attribute without stack
configuration is ‘No Power’. The state transition starts not before a valid configuration is applied.

DeviceNet Slave features 36/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.4 Hilscher-specific CIP services
2.4.1 Common

2.4.1.1 Attribute Option Flags

CIP Attribute Option Flags control the stack on how a certain attribute is to be treated. On the one
hand, attribute flags encode access rights and on the other, they control how an attribute is treated
by the stack.

The Stack defines the following four levels of access permission with increasing authority:

 Bus access,

 User access,

 Admin access

 No access.

The higher access rights imply the lower ones. This means that if, e.g. bus access is permitted for
a particular attribute, then also user access and admin access is granted. Access rights are
maintained for both data directions, i.e. Read and Write, or, in CIP-terminology, Get and Set.

Name Description
CIP_FLG_SET_ACCESS_BUS (0x0010) The attribute’s value is modifiable over the network.
CIP_FLG_SET_ACCESS_USER (0x0020) The attribute’s value is modifiable over the host interface.
CIP_FLG_SET_ACCESS_ADMIN (0x0040) The attribute’s value is modifiable internally by the stack itself.
CIP_FLG_SET_ACCESS_NONE (0x0080) The attribute’s value is not modifiable.
CIP_FLG_GET_ACCESS_BUS (0x0100) The attribute’s value is readable over the network.
CIP_FLG_GET_ACCESS_USER (0x0200) The attribute’s value is readable over the host interface.
CIP_FLG_GET_ACCESS_ADMIN (0x0400) The attribute’s value is readable internally by the stack itself.
CIP_FLG_GET_ACCESS_NONE (0x0800) The attribute’s value is not readable.
CIP_FLG_TREAT_FORWARD (0x1000) The stack will forward a SET service to this attribute to the host

application with a CIP Service Indication. The host application hast to
acknowledged the service and can accepted or rejected the SET
service to this attribute.

CIP_FLG_TREAT_NOTIFY (0x2000) The stack will notify the host application about changes in the
attribute value by means of a CIP ‘SET’ Service Indication.
The host application cannot reject the service.

CIP_FLG_TREAT_DISABLE (0x4000) The attribute is disabled and will be treated as an unsupported
attribute. It still may be exposed in the response to a
Get_Attributes_All CIP request.

CIP_FLG_TREAT_PROTECTED (0x8000) Attribute is protected (not settable) when protection mode is active.
(Not implemented).

CIP_FLG_TREAT_RESERVED (0x000F) The lower four bits D0..3 of the attribute flags are reserved for
internal use of the stack. They could be set, but the meaning is
internal to the stack and has to be ignored.

Table 42: Attribute option flags

DeviceNet Slave features 37/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Attribute Option Flags preset values

The table below shows all default attribute option flags as it is set at startup for each attribute. The
host application can change the attribute option flags to a limited extent using the “Set Attribute
Option” service.

 the flag TREAT_NOTIFY can be set by the host in general

 the flag TREAT_FORWARD can be set only for some particular attributes

Each colored cell shows, if the corresponding attribute option flag can be modified by the host or
not.

 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D0..3

C
la

ss

A
ttr

ib
ut

e

TR
EA

T
 P

R
O

TE
C

TE
D

TR
EA

T
 D

IS
A

B
LE

TR
EA

T
 N

O
TI

FY

TR
EA

T
 F

O
R

W
A

R
D

G
ET

 N
O

N
E

G
ET

 A
D

M
IN

G
ET

 U
SE

R

G
ET

 B
U

S

SE
T

 N
O

N
E

SE
T

 A
D

M
IN

SE
T

 U
SE

R

SE
T

 B
U

S

R
ES

ER
VE

D

1 1 0 0 0 0 0 0 0 1 0 0 1 0 X

2 0 0 0 0 0 0 0 1 0 0 1 0 X

3 0 0 0 0 0 0 0 1 0 0 1 0 X

4 0 0 0 0 0 0 0 1 0 0 1 0 X

5 0 0 0 0 0 0 0 1 1 0 0 0 X

6 0 0 0 0 0 0 0 1 0 0 1 0 X

7 0 0 0 0 0 0 0 1 0 0 1 0 X

2 2 0 0 0 0 0 0 0 1 0 1 0 0 x

3 1 0 0 0 0 0 0 0 1 0 0 0 1 X

2 0 0 0 0 0 0 0 1 0 0 0 1 X

3 0 0 0 0 0 0 0 1 0 0 0 1 X

4 0 0 0 0 0 0 0 1 0 0 0 1 X

5 0 0 0 0 0 0 0 1 0 1 0 0 X

6 0 1* 0 0 0 0 0 1 0 1 0 0 X

7 0 1* 0 0 0 0 0 1 0 1 0 0 x

8 0 1* 0 0 0 0 0 1 0 0 1 0 X

9 0 1* 0 0 0 0 0 1 0 0 1 0 X

4 1 0 0 0 0 0 0 1 0 1 0 0 0 X

2 0 0 0 0 0 0 1 0 1 0 0 0 X

3 0 0 0 0 0 0 0 1 0 0 1* 1* X

4 0 0 0 0 0 0 0 1 1 0 0 0 X

5 1 0 0 0 0 0 0 0 1 0 1 0 0 X

2 0 0 0 0 0 0 0 1 0 1 0 0 X

3 0 0 0 0 0 0 0 1 0 1 0 0 X

4 0 0 0 0 0 0 0 1 0 1 0 0 X

5 0 0 0 0 0 0 0 1 0 1 0 0 X

6 0 0 0 0 0 0 0 1 0 1 0 0 X

7 0 0 0 0 0 0 0 1 0 1 0 0 X

8 0 0 0 0 0 0 0 1 0 1 0 0 X

9 0 0 0 0 0 0 0 1 0 0 0 1 X

DeviceNet Slave features 38/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D0..3
C

la
ss

A
ttr

ib
ut

e

TR
EA

T
 P

R
O

TE
C

TE
D

TR
EA

T
 D

IS
A

B
LE

TR
EA

T
 N

O
TI

FY

TR
EA

T
 F

O
R

W
A

R
D

G
ET

 N
O

N
E

G
ET

 A
D

M
IN

G
ET

 U
SE

R

G
ET

 B
U

S

SE
T

 N
O

N
E

SE
T

 A
D

M
IN

SE
T

 U
SE

R

SE
T

 B
U

S

R
ES

ER
VE

D

12 0 0 0 0 0 0 0 1 0 0 0 1 X

13 0 0 0 0 0 0 0 1 1 0 0 0 X

14 0 0 0 0 0 0 0 1 0 1 0 0 X

15 0 0 0 0 0 0 0 1 1 0 0 0 X

16 0 0 0 0 0 0 0 1 0 1 0 0 X

17 0 0 0 0 0 0 0 1 0 0 0 1 X

0x2B 1 0 0 0 0 0 0 0 1 0 0 0 1 X

2 0 0 0 0 0 0 0 1 0 1 0 0 X

3 0 0 0 0 0 0 0 1 0 1 0 0 X

0x402 1 0 0 0 0 0 0 1 0 0 1 0 0 X

2 0 0 0 0 0 0 1 0 0 1 0 0 X

3 0 0 0 0 0 1 0 0 0 1 0 0 X

4 0 0 0 0 0 1 0 0 1 0 0 0 X

0x404 1 0 0 0 0 0 0 1 0 0 1 0 0 X

2 0 0 0 0 0 0 1 0 0 1 0 0 X

Table 43: Class Instance Attribute option flags and pre-set values

Note: Class 3 - Attributes 6, 7, 8, 9 are disabled per default. Is enabled, when switch functionality
for node and baud rate is enabled.

Note: Class 1 - Attributes 1, 2, 3, 4, 6, 7 can be made settable. This is only for very specific usage
e.g. in production phase to program the device identity. To be conform to the norm, these attributes
must be gettable only as it is set per default.

Note: Class 4 - Attribute 3 of class 4 is marked settable from bus when it is a consuming assembly
and settable from user when it is a producing assembly.

Note: Class 5 - Attribute 17 is only settable for class instance 4 (COS)

DeviceNet Slave features 39/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

The table below shows the attribute option flags of the class attributes.

 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D0..3

C
la

ss

C
la

ss
 A

ttr
ib

ut
e

TR
EA

T
 P

R
O

TE
C

TE
D

TR
EA

T
 D

IS
A

B
LE

TR
EA

T
 F

O
R

W
A

R
D

TR
EA

T
 N

O
TI

FY

G
ET

 N
O

N
E

G
ET

 A
D

M
IN

G
ET

 U
SE

R

G
ET

 B
U

S

SE
T

 N
O

N
E

SE
T

 A
D

M
IN

SE
T

 U
SE

R

SE
T

 B
U

S

R
ES

ER
VE

D

1..4 1 0 0 0 0 0 0 0 1 0 0 1 0 X

 2 0 0 0 0 0 0 0 1 0 0 1 0 X

 3 0 0 0 0 0 0 0 1 0 0 1 0 X

 6 0 0 0 0 0 0 0 1 0 0 1 0 X

 7 0 0 0 0 0 0 0 1 0 0 1 0 X

5,0x2B 1 0 0 0 0 0 0 0 1 0 1 0 0 X

 2 0 0 0 0 0 0 0 1 0 1 0 0 X

 3 0 0 0 0 0 0 0 1 0 1 0 0 X

 6 0 0 0 0 0 0 0 1 0 1 0 0 X

 7 0 0 0 0 0 0 0 1 0 0 1 0 X

0x402 1 0 0 0 0 0 0 1 0 0 1 0 0 X

2 0 0 0 0 0 0 1 0 0 1 0 0 X

3 0 0 0 0 0 0 1 0 0 1 0 0 X

6 0 0 0 0 0 0 1 0 0 1 0 0 X

7 0 0 0 0 0 0 1 0 0 1 0 0 X

Table 44: Class Attribute option flags and pre-set values

Note: The colored attribute option flags can be changed by the host application. By setting bit D8
GET_BUS to 0 and bit D9 GET_USER to 1, it is possible to hide an attribute from the network. You
can do this to customize the stack, e.g. to rebuild a legacy device in which this class attribute is not
supported.

DeviceNet Slave features 40/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.4.1.2 Get Attribute Option Flags

The Hilscher-specific service “Get Attribute Option” (0xFF33) service returns the option flags of the
targeted attribute.

Request Service Data Field Parameters:

The service does not accept any parameters.

Success Response Service Data Field Parameters:

Name Byte Size Description
Option Flags 2 This is a combination (Boolean OR) of Attribute Flags as described in Table 42.

Table 45: Hilscher Service – Get Attribute Option – Response data parameters

Unsuccessful Response Service Data Field Parameters:

The unsuccessful response does not provide any data.

2.4.1.3 Set Attribute Option Flags

The Hilscher-specific service “Set Attribute Option” (0xFF34) writes the option flags of the targeted
attribute.

Request Service Data Field Parameters:

Name Byte size Description
Option Mask 2 This is a combination (Boolean OR) of Attribute Flags as described in Table 42.

All bits set in this bitmask will be affected by the service:
 Attribute Flags not set in this mask will not be changed, despite of the value of the

corresponding bit index in “Option Flags”
 Attribute Flags set in this mask, which are not set in “Option Flags” will be cleared

from the Attribute Flags of the targeted attribute
 Attribute Flags set in this mask, which are also set in “Option Flags” will be set in the

Attribute Flags of the targeted attribute.
Option Flags 2 This is a combination (Boolean OR) of Attribute Flags as described in Table 42.

Attribute Flags that are set in this bit field will be set in the Attribute Flags of the targeted
attribute, if the corresponding bit index is also set in “Option Mask”
Attribute Flags that are not set in this bit field, but are set in “Option Mask”, will be
cleared from the Attribute Flags of the targeted attribute.

Table 46: Hilscher Service – Set Attribute Option – Request data parameters

Note: The operation technically applying to the Flags of the targeted attribute is, in C:
usFlags &= ~usOptionMask;
usFlags |= usOptionFlags & usOptionMask;

Success Response Service Data Field Parameters

The service has no response parameters.

Unsuccessful Response Service Data Field Parameters

The unsuccessful response does not provide any data.

DeviceNet Slave features 41/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.4.1.4 Attribute update Notify vs. Forward

The attribute option flags CIP_FLAG_TREAT_NOTIFY and CIP_FLAG_TREAT_FORWARD can be
used to include the host application in case of an attribute update, which is handled by the CIP
object library of the stack. The host application can register with one of these option flags to the
stack handled attributes with respect to limitation of registration described in Table 43: Class
Instance Attribute option flags and pre-set values on page 38.

Attribute Notify

The attribute flag CIP_FLAG_TREAT_NOTIFY can be used to inform the host application, when
an attribute value was updated. A CIP service indication ‘Set Attribute’ is sent to the host. The new
attribute value is sent to the host only when the stack has validated the attribute data and if it has
changed. The host has to respond to the indication positively for completeness. The host cannot
reject the Set attribute service that is registered for notification, even if the host sends a negative
response to the stack, it will be ignored. The following diagram shows the process when a master
writes an attribute. The CIP service indication is also generated when the stack itself updates the
attribute internally. A typical use case for this is to register for the MNS object to implement the
LED handling on host side.

Figure 3: Sequence Diagram – Attribute Update Notify

DeviceNet Slave features 42/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Attribute Forward

The flag CIP_FLAG_TREAT_FORWARD can be used for a confirmed update of an attribute. The
host application can accept or reject the attribute data before the stack applies it. A typical use
case for this is the registration for the Expected Packet Rate (EPR) attribute of the connection
object when the host wants to allow the establishment of an IO connection as final instance.

Figure 4: Sequence Diagram – Attribute Update Forward

DeviceNet Slave features 43/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

2.4.2 Identity Object

2.4.2.1 Modify Identity Status Attribute

The Identity Status Attribute 5 is a collection of 16 status bits representing general status
information of a device. Normally, the stack is the owner and controls these status bits.
Sometimes, it is required to modify some of these bits by the host application to indicate a device
state that depends on the application state.

Following status bits are allowed to be modified by the host application

 Fault bits 8, 9, 10, 11

 Extended Device Status Bits 4, 5, 6, 7

 Configured Bit 2

The Hilscher specific CIP service “CIPHIL_SERVICE_MODIFY_STATUS” (0x0501) must be used
for a particular modification of the Identity Status Attribute 5 flags.

The service “CIPHIL_SERVICE_MODIFY_STATUS” has to be send as a CIP service request
packet to stack, as described in subsection CIP Service sent from application on page 78.

The modification of the status bits is done by a mask / value operation.

Service Data of CIPHIL_MODIFY_STATUS_T

Name Byte size Description
usMask 2 The ‘Mask’ decides which status flag of the identity status attribute shall be changed

 Status Flags not set in this mask will not be changed in the Identity status attribute,
despite of the value of the corresponding bit index in “usValue”

 Status Flags set in this mask, which are not set in “usValue” will be cleared from the
Identity status attribute

 Status Flags set in this mask, which are set in “usValue” will be set in the Identity
status attribute

usValue 2 The ‘Value’ defines if the status flag of the identity status attribute shall be set or cleared
 Status flags that are set in this bit field will be set in the Status Flags of the Identity

Status Attribute 5, if the corresponding bit index is also set in “usMask”
 Status Flags that are not set in this bit field, but are set in “usMask”, will be cleared

from the Status Flags of the targeted attribute.
Table 47: Hilscher Service ’Modify Status’ – Request data parameters

DeviceNet Slave features 44/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

The source code below shows as an example how to modify the ‘Minor Recoverable Fault’ bit in
the Identity Status Attribute. It can be used in the same manner to set or clear the other status
attribute bits.
uint32_t AppDNS_MinorRecoverableFault(APP_DATA_T* ptAppData, bool fSet)
{
 uint32_t ulRet = CIFX_NO_ERROR;
 DNS_PACKET_CIP_SERVICE_REQ_T* ptReq = AppDNS_GlobalPacket_Init(ptAppData);

 CIPHIL_MODIFY_STATUS_T* ptIdStatus = \
 (CIPHIL_MODIFY_STATUS_T*)&ptReq->tData.abData[0]

 if(true == fSet)
 {
 ptIdStatus->usMask = CIP_CLASS_IDENTITY_ATT_STATUS_FAULT_MINOR_RECOVERABLE;
 ptIdStatus->usValue = CIP_CLASS_IDENTITY_ATT_STATUS_FAULT_MINOR_RECOVERABLE;
 }
 else
 {
 ptIdStatus->usMask = CIP_CLASS_IDENTITY_ATT_STATUS_FAULT_MINOR_RECOVERABLE;
 ptIdStatus->usValue = 0;
 }

 /* prepare packet with CIP service data */
 ptReq->tData.ulService = CIPHIL_SERVICE_MODIFY_STATUS;
 ptReq->tData.ulClass = CIP_CLASS_IDENTITY;
 ptReq->tData.ulInstance = 1;
 ptReq->tData.ulAttribute = CIP_CLASS_IDENTITY_ATT_STATUS;
 ptReq->tData.ulMember = 0;

 /* Issue CIP Service Request */
 ptReq->tHead.ulCmd = DNS_CMD_CIP_SERVICE_REQ;
 ptReq->tHead.ulLen = DNS_CIP_SERVICE_REQ_SIZE + sizeof(CIPHIL_MODIFY_STATUS_T);

 ulRet = AppDNS_GlobalPacket_SendReceive(ptAppData);
 return ulRet;
}

Modification of Fault Bits 8 ... 11

CIP defines four types of general fault events, indicated by bit 8, 9, 10, 11 of the Identity Object
Status Attribute 5.

Fault Type Fault Example
Minor recoverable an analog input device is sensing an input that exceeds the configured maximum input value

a rotary switch of a device is moved to a position that it is not operational to the network
Minor unrecoverable the battery-backed RAM within the device requires a battery replacement. The device will

continue to function properly until power is cycled for the first time
Major recoverable the configuration of the device is incorrect or incomplete.
Major unrecoverable the device failed its ROM checksum process.

Table 48: List of Identity Status Attribute Fault Bits

The listed examples shows the fault types. Finally, the product developer defines the events, which
causes any of these fault events.

Setting a minor / major fault has an implicit effect to the device LEDs. When setting a minor fault,
the MNS or MS LED starts to blink red as long the minor fault is present. When setting a major
fault the MNS or MS LED becomes solid red as long as the major fault is present.

DeviceNet Slave features 45/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

The stack may also detect a fault condition. Therefore, the stack internally has a copy of each fault
bit set by the host application and one fault bit when the stack has to report a fault event. Finally,
the stack performs an OR operation and puts the result into the Identity Status Attribute 5. If the
host sets a fault bit, it will be present as long as the host clears the bit or a channel init is
performed.

Name Fault bit 8 Fault bit 9 Fault bit 10 Fault bit 11
Fault bit set by host X X X X
Fault bit set by stack Y Y Y Y
Effective fault bit in Identity Status Attribute is
a OR operation of host set fault bit and stack
set fault bit

= X | Y = X | Y = X | Y = X | Y

Table 49: Hilscher Service – Modify Status– stack operation

Modification of Extended Device Status Bits 4 ... 7

Normally, the stack handles these bits per default on its own as described in the CIP Specification
Volume 1 Table 5A-2.6 [5]. Alternatively, the CIP specification describes that these bits can be
handled in a user-specific way. Therefore, the API of protocol stacks commonly allows modifying
these bits by the host application.

The modification is done in the same way as it is described for the fault bit modification with the
specific service CIPHIL_SERVICE_MODIFY_STATUS.

Note: Once the host has written one of the bits 4..7 (regardless whether the bit is set or cleared),
the stack will switch to handle these flags as user-specific and then the host is responsible for this
handling. The only way to go back that the stack takes care about these flags and again handles it
according Table 5A-2.6 is a reconfiguration / channel init procedure of the stack.

Modification of Configured Bit 2

Bit number 2 of the status attribute can be set to TRUE to indicate the application of the device has
been configured to do something different than the “out-of-box” default. This shall not include
configuration of the communications. The stack does not set this bit at all. After reset or
reconfiguration, the stack will clear this bit and the application has to set the bit again if required.

Getting started 46/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3 Getting started
This section provides basic information of the Hilscher DeviceNet Slave stack in terms of
configuring the stack, application behavior requirements and remanent data handling. It should be
read first before start reading the chapter Application interface on page 66.

3.1 Loadable Firmware (LFW)
The DeviceNet Slave stack V5 is available as so called ‘Loadable Firmware’ (LFW). This means
the application and the DeviceNet Slave protocol stack are running on different processors. While
the host application runs on a computer typically equipped with an operating system (such as
Microsoft Windows® or Linux) or an embedded host processor, the DeviceNet Slave protocol stack
runs on the netX processor. The connection is accomplished via a driver (Hilscher cifX Driver,
Hilscher netX Driver) as software layer on the host side and the AP task as software layer on the
netX side. Both communicate via a dual port memory (DPM) into which they both can write and
from which they both can read.

DeviceNet Host Application

netX Driver/CifX Driver

Dual Port Memory

Stack Application Task

DeviceNet Protocol Stack
(FAL - Fieldbus Application

Task)

DeviceNet Protocol API
DeviceNet Adapter Protocol API

CAN (Controller Area Network)

NETX

Figure 5: Loadable firmware

Getting started 47/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.2 Process data direction convention
The definition of process data direction in terms of DeviceNet from perspective of the slave

 ‘produced’ data are process data transferred from the slave to the master

 ‘consumed’ data are process data transferred from the master to the slave

The process data direction in terms of input and output from DPM perspective (user application) is
defined as:

 input data are process data received from the network

 output data are process data transferred to the network

DeviceNet Dual port memory Description
produced data The application writes process data to the

output image of the dual-port memory
Data sent from DeviceNet Slave to the DeviceNet
Master

consumed data The application reads process data the from
input image of the dual-port memory

Data sent from DeviceNet Master to the DeviceNet
Slave

Table 50: Process data direction convention

Getting started 48/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.3 Cyclic data exchange
The interface for exchanging IO data with the DeviceNet Slave stack is the dual-port memory
(DPM) containing the input and output area.

The standard method to exchange the receive data and transmit data between the communication
stack and the host application via DPM are the two cifX API functions xChannelIORead() and
xChannelIOWrite(). These functions are documented in [4]. They regulate the access to the
input area and output area of the DPM by handshake flags which are described in [1]. Using this
functions ensure the data consistency while exchanging the data between application and
communication stack.

DeviceNet is using I/O connections to transfer I/O data. A DeviceNet Slave produces and
consumes I/O data. The size of produced data or consumed data and the connection type is
subject of the configuration of the DeviceNet Slave stack. The I/O data of the connections are
stored in the input and output area of the DPM.

DPM area Length (Byte) Host access Comment
Output block Max. 255 Write/Read Produced data: data send from the DeviceNet Slave

to the master.
Input block Max. 255 Read Consumed data: data send from the master to

DeviceNet Slave.
Table 51: Input and output data

Note: The application must obey the following rules, when exchanging IO data via DPM with
the stack.

 The application always has to continue writing (updating) the DPM Output data regardless of
the communications state with valid data.

 The application always has to continue reading (updating) the DPM Input data regardless of
the communications state and handle them in the application context.

The DeviceNet slave stack supports several options for exchanging IO data between the
application and the stack:

1. IO Exchange – Free Run, see page 49

2. IO Exchange – RX Data Received, see page 51

3. IO Exchange – Application synchronized POLL.Rsp, see page 53

The free run is the default and most common method to exchange IO data with the DeviceNet
Slave stack. The other two options are used to reach reaction time synchronization.

Getting started 49/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.3.1 IO Exchange – Free Run
The default method of exchanging IO data between a host application and the DeviceNet Slave
stack via DPM is the ‘Free Run’ mode. In this mode, the network communication cycle and the
application cycle run independently. The stack uses process data buffers for receive data and
transmit data to manage the network cycle and the application cycle.

Figure 6: Free Run – data buffers to couple network and application cycle

Exchanging data in ‘Free Run’ between application and DeviceNet Slave stack is the default
method and matches to most of all use cases.

The way to exchange the receive and transmit with the DeviceNet Slave stack is calling the cifX
API functions xChannelIORead() and xChannelIOWrite() by the host application.

Figure 7: Free Run – data flow diagram

Getting started 50/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Time Description
t_CycApp Application cycle time: Time the application is calling the API functions to exchange transmit and receive

data.
t_CycNet Network cycle time: Time the master is exchanging data with the slave. In the diagram, the DeviceNet

POLL connection is used to show the data transfer.
t_LatRX Possible time until received data from the network will be available in the application.
t_LatTX Possible time until application data will be sent to the network.

Table 52: FreeRun – data flow diagram timings

Figure 7 shows the data flow of the default IO Exchange mode ‘Free Run’ through the different
layers. It shows the data flow from the network to the application for receiving data (RXD) and the
direction from the application to the network for transmitting data (TXD).

The diagram shows an example where the network cycle and the application cycle have the same
cycle time. It is just a timing snap shot. Both cycles (network and application) are running
independently. This means the phase of both cycles can vary and drift over the time to each other.

According this drift, the time that it can take until received data will be available from the network to
the application layer can vary. This time is named t_LatRX in the diagram. The max theoretical
value for t_LatRX is 2 * tCycApp. The theoretical min value for t_LatRX is 1 * tCycApp.

The time t_LatTX in the diagram indicates the time it can take for the data written by the application
to be sent to the network. This time is mostly determined by the network cycle “0 < t_LatTX <=
t_CycNet”.

DeviceNet connection timings are configured in expected packet rates (EPR). The smallest
configurable EPR unit in DeviceNet is 1 ms, which is the best achievable network cycle time. This
depends on several conditions like the baud rate, the amount of IO data per connection or slave,
the overall amount of IO data of the network and the response time of a slave.

The DeviceNet stack has a load limiter to restrict how frequently it is allowed to call
xChannelIORead() and xChannelIOWrite() by the application. The reason for this load
limiter is not to overload the communication stack with IO exchange calls from application and
disturbing the network communication. Calling the functions xChannelIORead() or
xChannelIOWrite() will fail with, when they are called more frequently than this limiter. The
reason is that communication stack holds back the handshake flags when falling below this limiter.

For the DeviceNet stack V5.1, V5.2, and V5.3, the load limiter is 1 ms. Beginning with DeviceNet
stack V5.4, the load limiter is decreased to 250 µs. This means the application cycle can run four
times faster than the expected smallest network cycle of 1 ms.

Configuration

The Free Run mode is the default operation. There is no explicit configuration required reading
configuration of the trigger types. The trigger type for usPdInHskTriggerType is set to
HIL_TRIGGER_TYPE_PDIN_NONE and the trigger type for usPdOutHskTriggerType is set to
HIL_TRIGGER_TYPE_PDOUT_NONE per default by the stack.

Getting started 51/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.3.2 IO Exchange – RX Data Received
As stated in the description for the ‘Free Run’ mode, there is a possible latency until the receive
data from the network become available to the application. Sometimes it is necessary to transfer
the network receive data to the application context more quickly. This mode is only useful if the
application is working in interrupt mode for the receive data.

Therefore, the DeviceNet stack support the trigger type on “RX DATA RECEIVED”. In this mode,
the handshake flags for receive data remain on the stack side until new data is received. This
allows the stack to copy and update the RX data immediately into the DPM because the access
right to the DPM is by the stack. Once the RX data is updated, the stack returns the RX handshake
flags to the application. If the DPM handling on the application side works in IRQ mode, the return
of the RX handshake flags results in an IRQ to the application to read out the RX data immediately.
The latency until RX data appear from the network to the application mainly exist of the processing
time of the RX data by the stack and copy the data to the DPM and IRQ latency and processing
time of function xChannelIORead() on application side.

Figure 8: RX Data Received – data flow diagram

Time Description
t_CycApp Application cycle time: Time the application is calling the API functions to exchange transmit and receive

data.
t_CycNet Network cycle time: Time the master is exchanging data with the device. In the diagram, the DeviceNet

POLL connection is used to show the data transfer.
t_LatRX Possible time until received data from the network will be available in the application.
t_LatTX Possible time until application data will be sent to the network.

Table 53: RX Data Received – data flow diagram timings

Getting started 52/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Configuration

This mode of operation requires to configure the trigger type for the receive data by sending the
packet the command HIL_SET_TRIGGER_TYPE_REQ. The trigger type for
usPdInHskTriggerType must be set to HIL_TRIGGER_TYPE_PDIN_RX_DATA_RECEIVED and
the trigger type for usPdOutHskTriggerType must be set to
HIL_TRIGGER_TYPE_PDOUT_NONE.

Configuring the trigger types (see also section Get / Set Trigger Type on page 107)

/**
*! Function to Set the Trigger Type
* \param ptAppData pointer to APP_DATA_T structure
**/
uint32_t AppDNS_SetTriggerType(APP_DATA_T* ptAppData)
{
 uint32_t ulRet = CIFX_NO_ERROR;
 HIL_SET_TRIGGER_TYPE_REQ_T* ptReq = AppDNS_GlobalPacket_Init(ptAppData);

 ptReq->tHead.ulCmd = HIL_SET_TRIGGER_TYPE_REQ;
 ptReq->tHead.ulLen = HIL_SET_TRIGGER_TYPE_REQ_SIZE;
 ptReq->tHead.ulSta = 0;

 ptReq->tData.usPdInHskTriggerType = HIL_TRIGGER_TYPE_PDIN_RX_DATA_RECEIVED;
 ptReq->tData.usPdOutHskTriggerType = HIL_TRIGGER_TYPE_PDOUT_NONE;
 ptReq->tData.usSyncHskTriggerType = HIL_TRIGGER_TYPE_SYNC_NONE;

 ulRet = AppDNS_GlobalPacket_SendReceive(ptAppData);

 return ulRet;
}

Getting started 53/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.3.3 IO Exchange – Application synchronized POLL.Rsp
“Application synchronized POLL.Rsp” is a special IO Exchange variant of “RX DATA RECEIVED”
as described in section IO Exchange – RX Data Received. This mode is only useful if the
application is working in interrupt mode for the receive data.

If the application synchronized poll response is activated, the stack does not return the poll
response immediately after processing the poll request by itself anymore. The transmission of the
poll response message is bound to the update of the TX data by the application. As soon as the
data from the poll request is hand over to the host via DPM, the stack waits for updated TX data
provided by the application via DPM invoking xChannelIOWrite(). When new TX data are
provided by the application, the stack immediately sends the poll response to the master with the
data provided by the application. This option allows build an application to send TX data computed
by previously received data. Waiting of the stack for updated TX data by the application only
affects the poll response. It is the responsibility of the application to always provide updated TX
data right in time. The stack does not generate a poll response implicitly no matter how long the
application takes providing the updated TX data. The host application has full control over the bus
cycle (response time) by controlling the poll response and must be aware of this. If the host
application is slower than the configured timeout for the poll connection, the master is expected to
repeat the poll request or release the connection, followed by a new connection attempt.

Figure 9: App synchronized poll.rsp – data flow diagram

Getting started 54/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Time Description
t_CycNet Network cycle time: Time the master is exchanging data with the device. In the diagram, the DeviceNet

POLL connection is used to show the data transfer.
t_LatRX Possible time until received data from the network will be available in the application. This time includes

the processing of the RX data.
t_AppPoc Application processing time.
t_LatTX Possible time until application data will be sent to the network.
t_Rsp The time t_Rsp in the diagram represents the poll response time from the last bit of a poll request

telegram until the first bit of the poll response telegram on the network.
Table 54: App synchronized poll.rsp – data flow diagram timings

Configuration

This mode of operation requires to configure the trigger type for the receive data by sending the
packet the command HIL_SET_TRIGGER_TYPE_REQ. The trigger type for
usPdInHskTriggerType must be set to HIL_TRIGGER_TYPE_PDIN_RX_DATA_RECEIVED and
the trigger type for usPdOutHskTriggerType must be set to
HIL_TRIGGER_TYPE_PDOUT_NONE. Additional the configuration flag
DNS_CFG_FLAG_ENABLE_TXD_UPDATE_CONTROLLED_POLL_RES must be set within the flag
field ulConfigFlags of set configuration packet (see section Set Configuration service on page
69).

Configure the trigger types (see also section Get / Set Trigger Type on page 107).

/**
*! Function to Set the Trigger Type
* \param ptAppData pointer to APP_DATA_T structure
**/
uint32_t AppDNS_SetTriggerType(APP_DATA_T* ptAppData)
{
 uint32_t ulRet = CIFX_NO_ERROR;
 HIL_SET_TRIGGER_TYPE_REQ_T* ptReq = AppDNS_GlobalPacket_Init(ptAppData);

 ptReq->tHead.ulCmd = HIL_SET_TRIGGER_TYPE_REQ;
 ptReq->tHead.ulLen = HIL_SET_TRIGGER_TYPE_REQ_SIZE;
 ptReq->tHead.ulSta = 0;

 ptReq->tData.usPdInHskTriggerType = HIL_TRIGGER_TYPE_PDIN_RX_DATA_RECEIVED;
 ptReq->tData.usPdOutHskTriggerType = HIL_TRIGGER_TYPE_PDOUT_NONE;
 ptReq->tData.usSyncHskTriggerType = HIL_TRIGGER_TYPE_SYNC_NONE;

 ulRet = AppDNS_GlobalPacket_SendReceive(ptAppData);

 return ulRet;
}

Getting started 55/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.4 Acyclic data exchange
For acyclic data exchange, DeviceNet uses the Explicit Messaging services (see page 77). For
reading or writing acyclic data, the application can use the CIP services Get_Attribute or
Set_Attribute service. Data are stored within objects, see section Object classes on page 18. All
acyclic data exchange with the DeviceNet slave stack takes place via the mailboxes of the DPM.

The basic interface for interaction between the application and the DeviceNet Slave stack is the
packet API. The packet API comply the Request (REQ) / Confirmation (CNF) and Indication (IND /
Response (RES) principle. This means the application can send a request to the stack and will get
a confirmation from the stack. The stack can send an indication to the application and the
application has to send a corresponding response.

Note: The application must obey the following rules, when handling with acyclic packets via
mailboxes.

 In case the application sends, a request to stack it always has to retrieve and handle the
corresponding response. It has to evaluate the status of the response to check if the request
was successful or not.

 The application has to retrieve indication and confirmations packets from the receive mailbox
fast as possible, to avoid overflow or blocking situations of the mailbox system.

 To receive indications from the stack the application has to register to stack. Without
registration, the stack will not send indications to application.

 In case the application has received an indication, it always has to send the corresponding
response.

 The application has to send a response soon as possible, to prevent service timeouts to the
network communication.

 The application has to send a response within 3 seconds. Otherwise, the stack will
generate an error response.

Getting started 56/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.5 Configuration methods
The following methods are available to configure the DeviceNet Slave stack 5:

3.5.1 Basic packet configuration set
In case of packet-based configuration, the host sends the configuration data via configuration
packets from the host application to the stack. The configuration data are stored in volatile memory
of the stack. The application has to send the configuration each time on startup or reconfiguration.

Figure 10: Basic packet configuration sequence

Getting started 57/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.5.2 Extended packet configuration set
In case of extended packet-based configuration, the host sends the default set configuration
packet. Afterwards, the host can the packets for registration used specific objects and/or
registration of additionally assembly objects.

Figure 11: Extended packet configuration sequence

Getting started 58/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.5.3 Data base configuration
The data base configuration is a non-volatile configuration. In this case, the stack automatically
uploads a configuration file (config.nxd) from the flash file system at the start. The configuration
tool generates the configuration file.

Note: When the stack is configured by a data base, it cannot be configured by the packet API.

Figure 12: Data base configuration sequence

Getting started 59/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.6 Host application behavior
The following diagram gives an overview of how the host application shall behave in different
scenarios.

Figure 13: Host application behavior

Getting started 60/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.6.1 Startup
At the very first start after power-up, the host application can register itself to the stack. It is
mandatory, if the host application wants to receive any indication from the stack.

Conditional it is required to send remanent data at startup. For more information, see section
Remanent data on page 61

3.6.2 Configuration
The configuration behavior depends on the chosen configuration method as described in section
Configuration methods on page 56.

 For using the Basic Configuration Packet Set, see section Basic packet configuration on
page 56.

 For using the Extended Configuration Packet Set see section Extended packet configuration
on page 57.

 For using a configuration file created by a configuration tool, see section Data base
configuration on page 58.

3.6.3 Operational
In the operational state, the host application enters its main process loop. This includes IO data
handling, protocol stack event handling.

3.6.4 Reset
The reset behavior is independent of the chosen configuration method. For more information
regarding the “Reset Indication” and “Delete Config” handling, see section Reset service on page
91 and Delete Config on page 106.

Getting started 61/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.7 Remanent data
3.7.1 Remanent data responsibility
When you design your application, you have to decide whether

 the protocol stack stores the remanent data (default) or

 the application stores the remanent data

If the system designer decides for application-side storage of remanent data, then the firmware’s
tag list must be modified as described in section ‘Feature configuration via tag list’ on page 113.

Note: The Hilscher DeviceNet Slave stack is capable of handling remanent data for the built-
in CIP objects only. If the host application implements further CIP objects, which also
bear non-volatile attributes, they will have to be handled completely in the scope of the
host application. The latter case is not supported by mechanisms of the stack and thus
is not subject of this manual.

Table 55: Protocol stack or host application stores remanent data

Remanent data is
stored by

Description

Protocol stack The stack stores the remanent data

Requirements
The protocol stack requires access to non-volatile memory.

Firmware configuration
In the tag list “Remanent Data Responsibility” the tag “Remanent Data stored by Host” has to be
set to disabled in the firmware file (*.nxi or *.nxf). This is the default setting in a firmware.

Application The application stores the remanent data
In case the host application stores remanent data, the protocol stack no longer accesses the
Flash memory, but provides the complete remanent data block towards the host application per
indication. The host application has to store the provided data with each indication and has to set
this data back to the stack in the (re)configuration process.

Requirement
The application has to use the Channel Component Information service
(GENAP_GET_COMPONENT_IDS_REQ) to get the information about the required size for remanent
data of each protocol stack component. The application has to use the Set Remanent Data
service (HIL_SET_REMANENT_DATA_REQ) and to support the Store Remanent Data service
(HIL_STORE_REMAMENT_DATA_IND).

Firmware configuration
In the tag list “Remanent Data Responsibility” the tag “Remanent Data stored by Host” has to be
set to enabled in the firmware file (*.nxi).

Configuration
The application has to use the Set Remanent Data service (HIL_SET_REMANENT_DATA_REQ) to
provide the remanent data to each protocol stack component any time the host application starts
up for the first time (e.g. when coming from power up) and before the application sends the Set
Configuration service (page 69). For a state diagram, see section Host application on page 59.

During runtime
The stack component indicates to the application the Store Remanent Data service
(HIL_STORE_REMAMENT_DATA_IND) each time remanent data has been changed. The stack
component provides the remanent data as a block towards the application. The application has
to store the remanent data with each indication.
Note: For a detailed description of the Channel Component Information service, the Set
Remanent Data, and the Store Remanent Data Indication, see reference [3].

Getting started 62/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.7.2 Remanent data state
The remanent data is either available/undeleted or unavailable/deleted. This state is not explicitly
observable, but maintained by the protocol stack. This state is stored in the remanent data BLOB
itself. If no such BLOB is available, the remanent data counts as unavailable/deleted.

3.7.3 Remanent data handling
At startup with a new configuration, the stack will set its remanent data to its default values or
equal to the value submitted from host application. If a remanent value has been set via network,
this value will be applied and will get priority against the value from the host configuration. If the
host configuration changes, then the remanent data will be discarded and the host configuration
will get priority again.

The option to set the MAC ID or Baud rate via network is maybe restricted if the source of
configuration is marked as fixed. This typically happens, when rotary switches configure the MAC
ID or Baud rate. In this case, the DeviceNet Slave stack will reject a set service via network with an
appropriate error response.

3.7.4 Remanent data values
According the DeviceNet specification there are some operational data that may can be modified
from network side from a master or commissioning tool that need to be stored remanent.

The DeviceNet Slave stack stores this particular data per default by its own into a non-volatile
memory. Currently, three parameters may need to be stored remanent.

Node Address

According the DeviceNet specification Attribute 1 of the DeviceNet Object, the ‘MAC ID’, can be
written via network by a master or commissioning tool. In this case, the DeviceNet Slave has to
store the new MAC ID remanent and apply them.

Baud Rate

According the DeviceNet specification Attribute 2 of the DeviceNet Object, the Baud rate, can be
written via network by a master or commissioning tool. In this case, the DeviceNet Slave has to
store the new Baud rate remanent and apply them after a reset.

Getting started 63/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Bus Off Interrupt

According the DeviceNet specification Attribute 3 of the DeviceNet Object, the ‘BOI’, can be written
via network by a master or commissioning tool. In this case, the DeviceNet Slave has to store the
new value remanent. The BOI attribute defines the behavior of the stack in case a CAN bus off
event appears. This is a heavy critical link fault, which hints to serious network problems.
Therefore, the default behavior according to the DeviceNet specification is to go offline from the
network into Communication Faulted state. Normally, this state should be recovered by manual
intervention like reset or network power resume. In case this attribute is set, the stack will try to
resume the communication by itself.

Note: If rotary switches configure the MAC ID and Baud rate, they cannot be set from network. In
this case, the DeviceNet Slave stack will reject a set service via network with an appropriate error
response.

Getting started 64/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.8 Device data
The Flash Device Label (FDL) contains device data. The device-specific data in the Flash Device
Label is set during production of the device. During start of the firmware, the firmware reads this
data into the Device Data Provider (DDP).

The following table lists the device data and describes how the DeviceNet slave stack maps this
data to DeviceNet.

Name DeviceNet mapping

Manufacturer ID Not mapped to DeviceNet.

Device class Not mapped to DeviceNet.

Device number Not mapped to DeviceNet.

Serial number Mapped to Identity Object, Attribute 6.

Hardware compatibility number Not mapped to DeviceNet.

Hardware revision number Not mapped to DeviceNet.

Production date Not mapped to DeviceNet.
Table 56: Basic Device Data in the Flash Device Label

The Flash Device Label offers the possibility to store OEM-specific device data. The following table
lists the mapping of the OEM-specific device data to DeviceNet.

Name DeviceNet mapping DeviceNet coding

OEM data option flags Each flag determines whether the parameter value
from the Basic Device Data or from OEM
identification is to be used.
Bit 0: If 1, OEM Serial number is valid.
Bit 1: If 1, OEM order number is valid.
Bit 2: OEM hardware revision is valid.

Bit 3: OEM production date/time is valid.

-

OEM serial number Mapped to Attribute 6 of the Identity Object. Null-terminated C string with decimal
values "1" … "4294967295"

OEM order number Not mapped to DeviceNet. -

OEM hardware revision Not mapped to DeviceNet. -

OEM production
date/time

Not mapped to DeviceNet. -

Table 57: OEM identification in the Flash Device Label

Note: Although the DeviceNet slave stack is using only the serial number from the OEM
parameter, the host application has to set all OEM option flags. If OEM-specific device
data is required to be used all enabling bits (bits 0 – 3) have to be set. It is not possible
to set a single parameter only. All parameters have to be set simultaneously.

Getting started 65/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

3.8.1 Device Serial Number
The device serial number as reflected in the CIP Identity Object, attribute 6, together with the
vendor ID, forms a unique identifier for each device on any CIP network. Each vendor is
responsible for guaranteeing the uniqueness of the serial number across all of its devices.

Per default, the protocol stack applies the serial number from the underlying Device Data Provider
(DDP), which in turn fetches it from either the SecMem or FDL data sources. The host application
cannot set the serial number attribute directly. In the DNS_CMD_SET_CONFIGURATION_REQ it has to
parameterize a value of zero for the serial number. This should be fine for most applications.

Anyway, if the host application seeks to set its own serial number, e.g. if no SecMem is available,
the firmware has to be taglist-modified accordingly (refer to section on page 111). Then, it uses the
DDP’s OEM serial number attribute to set a custom serial number and render this data valid and
finally, set the DDP active. The following pseudo code shows this approach:

 /* optionally when initial DDP state is passive:
 set additional (OEM) DDP base device parameters: serial number
 */
 HIL_DDP_SERVICE_SET_REQ_T* ptReq = (HIL_DDP_SERVICE_SET_REQ_T*)&myPacket;
 char* szSerialNumber = "76543";

 memset(&ptReq->tHead, 0, sizeof(ptReq->tHead));

 ptReq->tHead.ulCmd = HIL_DDP_SERVICE_SET_REQ;
 ptReq->tHead.ulLen = sizeof(ptReq->tData.ulDataType) + strlen(szSerialNumber) + 1;
 ptReq->tData.ulDataType = HIL_DDP_SERVICE_DATATYPE_OEM_SERIALNUMBER;

 memcpy(ptReq->tData.uDataType.szString, szSerialNumber, strlen(szSerialNumber) + 1);

 SendPacket(&myPacket, mychannel);

 /* also render the OEM serial number "valid" in the corresponding bit field */
 ptReq->tHead.ulCmd = HIL_DDP_SERVICE_SET_REQ;
 ptReq->tHead.ulLen = sizeof(ptReq->tData.ulDataType)
 + sizeof(ptReq->tData.uDataType.ulValue);
 ptReq->tData.ulDataType = HIL_DDP_SERVICE_DATATYPE_OEM_OPTIONS;
 ptReq->tData.uDataType.ulValue = 0xF; /* set all OEM bits valid */

 SendPacket(&myPacket, mychannel);

 /* required when initial DPP state is passive: Set DDP active now */
 ptReq->tHead.ulCmd = HIL_DDP_SERVICE_SET_REQ;
 ptReq->tHead.ulLen = sizeof(ptReq->tData.ulDataType)
 + sizeof(ptReq->tData.uDataType.ulValue);
 ptReq->tData.ulDataType = HIL_DDP_SERVICE_DATATYPE_STATE;
 ptReq->tData.uDataType.ulValue = HIL_DDP_SERVICE_STATE_ACTIVE;

 SendPacket(&myPacket, mychannel);

Note: OEMization is DeviceNet-specific. Other software components will reflect the Hilscher
serial number from the base device data anyway instead of the OEM-data, e.g. the
netIDENT / EtherNetDeviceConfig subsystem.

Application interface 66/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4 Application interface
This chapter defines the user application interface of the DeviceNet-Slave Stack via
‘Communication Channel Interface’ of the Dual port Memory.

The ‘Communication Channel Interface’ is the Hilscher’s dual-port memory interface for field buses
or other communication stacks. A typical application is when using PC cards or COM modules with
a discrete DPM and accessing the DeviceNet Slave via Driver API.

4.1 Service overview
The table below lists all packet-based services supported by the DeviceNet Slave stack.

Topic Service Command code Type Page
Configuration Set Configuration service 0xB100 / 0xB101 REQ/CNF 69

Register Class Service 0xB106 / 0xB107 REQ/CNF 81
Unregister Class service 0xB108 / 0xB109 REQ/CNF 86
Create Assembly service 0xB10A / 0xB10B REQ/CNF 75

Explicit Messaging CIP Service sent from application 0xB102 / 0xB103 REQ/CNF 78
CIP Service sent by a master 0xB104 / 0xB105 IND/RES 88
Reset Service 0xB10C / 0xB10D IND/RES 91

Diagnosis Diag service 0xB10E / 0xB10F REQ/CNF 96
Hilscher Common
services

Channel Init 0x2F80 / 0x2F81 REQ/CNF 106
Register / Unregister Application 0x2F10 / 0x2F11

0x2F12 / 0x2F13
REQ/CNF 106

Get / Set Watchdog Time 0x2F02 / 0x2F03
0x2F04 / 0x2F05

REQ/CNF 106

Delete Config 0x2F14 / 0x2F15 REQ/CNF 106
Start / Stop Communication 0x2F30 / 0x2F31 REQ/CNF 107
Lock / Unlock Configuration 0x2F32 / 0x2F33 REQ/CNF 107
Get DPM I/O Information 0x2F0C / 0x2F0D REQ/CNF 107
Get / Set Trigger Type 0x2F92 / 0x2F93 REQ/CNF 107
Firmware Identification 0x1EB6 / 0x1EB7 REQ/CNF 107
Set Remanent Data 0x2F8C / 0x2F8D REQ/CNF -

Table 58: Service overview

Application interface 67/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.2 Configuration services
4.2.1 Basic configuration sequence

Figure 14: DNS_CMD_SET_CONFIGURATION_REQ/CNF - Basic configuration sequence diagram

Once the DeviceNet Slave stack is started, it must be initialized with appropriate network
parameters like Baud rate, MAC ID, Device Ident information, IO Produce/Consumed size etc.
The diagram above shows the basic configuration flow to configure the stack.

Application interface 68/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Step Description
Register Application *) At startup, the host application can register itself to the stack in order to receive any

indication packets from the stack. This is necessary for example to receive CIP Service
Indications. The registration is optional. It is mandatory if the host application wants to
receive any indications from stack.

Set Configuration The set configuration service provides the basic configuration to stack. The stack evaluates
the data and stores it into volatile memory. At this point, the new configuration is not yet
applied; it is just verified and stored.

Channel Init This service causes the stack to apply the new configuration.
Start Communication **) After configuration, the communication must be released with the Start Communication

service. This service is required, if the “Application Controlled” startup is configured.
IO Exchange Finally, the application has to exchange IO data with the stack.

Table 59: Basic configuration steps

Application interface 69/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.2.2 Set Configuration service

4.2.2.1 Set Configuration request

Packet description

Variable Type Value / Range Description
ulLen uint32_t sizeof(DNS_SET_CONFIGURATION_V1_REQ)

ulCmd uint32_t 0xB100 DNS_CMD_SET_CONFIGURATION_REQ

Data
ulVersion uint32_t 1 Version of Set Configuration

unCfg.tV1

ulSystemFlags uint32_t bit field System Flags
For a description, see Table 61 on page 72.

ulWdgTime uint32_t 0, 20-65535 Host Watchdog Time in milliseconds
0: watchdog is disabled
min = 20; default = 1000; max = 65535

ulNodeId uint32_t 0-63 Node id
MAC ID of the DeviceNet Slave in the network.

ulBaudrate uint32_t 0;1;2 Baud rate
0: 125 kBit/s (default)
1: 250 kBit/s
2: 500 kBit/s

ulConfigFlags uint32_t 0 Configuration flags
For a description see Table 62 on page 73

ulObjectFlags uint32_t 0 Object Configuration flags
These flags are not used set 0

usVendorId uint16_t 1-65535
(default 283)

DeviceNet specific unique number, which is fixed by the ODVA
for each DeviceNet manufacturer. The DNS task itself uses this
ID during the Duplicate MAC-ID check phase and within each
sent Duplicate MAC-Id check response. The value range of this
variable is not limited. The Hilscher ID is 283 decimal.

usDeviceType uint16_t 0-65535
(default 12)

Identification of the general type of product. The Hilscher
standard value is 12 denoting a Communications Adapter.

usProductCode uint16_t 1-… Identification of a particular product within a defined device type.

bMinorRev uint8_t 1-255
(default 1)

First part of the revision identifying the revision of the DNS
device. The revision attribute consists of Major and Minor
Revisions and they are typically displayed as major.minor.

bMajorRev uint8_t 1-127
(default 1)

Second part of the revision. The Major Revision attribute is limited
to 7 bits. The eighth bit is reserved by DeviceNet and must have
a default value of zero.

ulSerialnumber uint32_t 0 Deprecated. This value has to be set to zero.
The firmware will apply the serial number as stored in the Device
Data Provider (DDP), which in turn fetches it either from the
SecMem or from FDL data sources.
Refer to section 3.8 / 3.8.1 for details.

abReserved[3] uint8_t 0 Reserved set to 0

bProductNameLen uint8_t 1-32 Length of abProdName string. The maximum number of
characters in this string is 32.

Application interface 70/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Variable Type Value / Range Description
abProductName[32] uint8_t[] Readable

ASCII
Characters

ASCII text string that should represent a short description of the
product/product family. The maximum number of characters in
this string is 32. The number of characters must be set in the
variable bProdNameLen.
Note: The firmware does not check if the set of characters is in
the readable range. This is in responsibility of the application.

uProduceAsInstance uint32_t 1 … 255
Default 101

Instance number of input assembly (Slave to Master)
Note: The value of ulProduceAsInstance must differ from the
value of ulConsumeAsInstance.
Note: The host application is responsible to choose an
assembly ID from a proper range as defined in CIP

ulProduceAsFlags uint32_t bit field 0: default
For details see: Table 65: Assembly configuration flags on page
76

ulProduceAsSize uint32_t 0 … 255 Number of input bytes the DNS task shall produce in the view of a
master for each established connection. The bytes, which shall
be produced then, must be handed over in the send data area of
the dual-port memory.

ulConsumeAsInstance uint32_t 1 … 255
Default 100

Instance number of output assembly (Master to Slave)
Note: The value of ulProduceAsInstance must differ from the
value of ulConsumeAsInstance.
Note: The host application is responsible to choose an
assembly ID from a proper range as defined in CIP

ulConsumeAsFlags uint32_t bit field 0: default
For the consume assembly optionally bit D8 can be set to map
Run / Idle information into input image of the DPM
For details see: Table 65: Assembly configuration flags on page
76

ulConsumeAsSize uint32_t 0 … 255 Number of output bytes the DNS task shall consume in the view
of a master for each established connection. The bytes which are
received are handed over in the receive data area of the dual-port
memory.
Note: The consumed data will be placed at offset 0 of the input
image of the DPM. If bit D8 of ulConsumeAsFlags is the the 4
byte Run/Idle header is placed at offset 0 of the DPM and the
assembly data will start at offset 4 of the DPM. See also section
Process data status on page 111.

Table 60: DNS_CMD_SET_CONFIGURATION_REQ – Set Configuration request

Packet structure reference
/**/
/* System flags */
/**/
#define DNS_SYS_FLG_MANUAL_START 0x00000001
#define DNS_SYS_FLG_ADR_SW_ENABLE 0x00000010
#define DNS_SYS_FLG_BAUD_SW_ENABLE 0x00000020
#define DNS_SYS_FLG_RESERVED 0xFFFFFFCE

/**/
/* Baudrates */
/**/
#define DNS_BAUDRATE_125kB 0
#define DNS_BAUDRATE_250kB 1
#define DNS_BAUDRATE_500kB 2

/**/
/* Set Configuration Packet */
/**/

Application interface 71/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

#define DNS_CONFIGURATION_V1 1

typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_CONFIGURATION_V1_Ttag
{
 uint32_t ulSystemFlags;
 uint32_t ulWdgTime;

 uint32_t ulNodeId;
 uint32_t ulBaudrate;

 uint32_t ulConfigFlags;
 uint32_t ulObjectFlags;

 uint16_t usVendorId;
 uint16_t usDeviceType;
 uint16_t usProductCode;
 uint8_t bMinorRev;
 uint8_t bMajorRev;
 uint32_t ulSerialNumber;
 uint8_t abReserved[3];
 uint8_t bProductNameLen;
 uint8_t abProductName[32];

 uint32_t ulProduceAsInstance;
 uint32_t ulProduceAsFlags;
 uint32_t ulProduceAsSize;

 uint32_t ulConsumeAsInstance;
 uint32_t ulConsumeAsFlags;
 uint32_t ulConsumeAsSize;

} DNS_CONFIGURATION_V1_T;

/* Request Packet Data*/
typedef __HIL_PACKED_PRE union __HIL_PACKED_POST DNS_SET_CONFIGURATION_REQ_Utag
{
 DNS_CONFIGURATION_V1_T tV1;

} DNS_SET_CONFIGURATION_REQ_U;

typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_SET_CONFIGURATION_REQ_Ttag
{
 uint32_t ulVersion;
 DNS_SET_CONFIGURATION_REQ_U unCfg;
} DNS_SET_CONFIGURATION_REQ_T;

typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_PACKET_SET_CONFIGURATION_REQ_Ttag
{
 HIL_PACKET_HEADER_T tHead;
 DNS_SET_CONFIGURATION_REQ_T tData;

} DNS_PACKET_SET_CONFIGURATION_REQ_T;

#define DNS_SET_CONFIGURATION_V1_REQ_SIZE (sizeof(DNS_CONFIGURATION_V1_T)+4)

Application interface 72/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Parameter: ulSystemFlagsThe System Flags define the startup behavior of the stack. They also
define whether the hardware switches are enabled.

Bit Description
0 Manual Start Enable, MSK_DNS_SYS_FLG_MANUAL_START:

0: Automatic. Network connections are opened automatically regardless of the state of the host application.
1: Application controlled. The firmware is forced to wait for the host application to set the Application Ready
flag in the communication change of state register (see reference [1]).

4 Address Switch Enable, MSK_DNS_SYS_FLG_ADR_SW_ENABLE:
If this bit is set, the handling mechanism of the address switch is activated and attribute 6 and 8 of the
DeviceNet object are enabled.

5 Baud rate Switch Enable, MSK_DNS_SYS_FLG_BAUD_SW_ENABLE:
If this bit is set, the handling mechanism of baud rate switch is activated and attribute 7 and 9 of the DeviceNet
object are enabled.

Others Reserved.
Table 61: Set Configuration parameter ‘ulSystemFlags

Parameter: ulConfigFlags

These flags configure stack specific behavior.

Bit Description
0 ... 7 Reserved.
8, 9 Message Body Format

Bit 8 and 9 together define the message body format:
00: Message Body Format 8/8 (default) (Class/Instance)
01: Message Body Format 8/16 (Class/Instance)
10: Message Body Format 16/16 (Class/Instance)
11: Message Body Format 16/8 (Class/Instance)
The message body format specifies the address range of class and instance. The default of 8/8 allows a
highest address of 255 for class and instance where 16/16 allows a highest address of 65535 for classes
and instance.
Note: The DeviceNet master must also support the configured message body format.

10, 11 Reserved.
12 0: POLL connection is allowed (default)

1: POLL connection is not allowed
If this bit is set the master cannot open an IO connection of the type POLL

13 0: STROBE connection is allowed (default)
1: STROBE connection is not allowed
If this bit is set the master cannot open an IO connection of the type STROBE

14 0: COS connection is allowed (default)
1: COS connection is not allowed
If this bit is set the master cannot open an IO connection of the type COS

15 0: CYC connection is allowed (default)
1: CYC connection is not allowed
If this bit is set the master cannot open an IO connection of the type CYC

16 0: Application controlled POLL response disabled (default)
1: Application controlled POLL response enabled
(Refer to section IO Exchange – Application synchronized POLL.Rsp on page 53)

17 … 30 Reserved

Application interface 73/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

31 DNS_CFG_FLAG_INDICATION_NETWORK_POWER
When this flag is set, the stack will forward the 24V Network Power state within the reset indication packet.
For details, see chapter ‘Reset service’ on page 91.

Table 62: Set Configuration parameter ulConfigFlags

Source code example
void DnsUser_SetConfig_Req(DNS_PACKET_SET_CONFIGURATION_REQ_T *ptSetCfgReq)
{
 DNS_CONFIGURATION_V1_T *ptCfg = &ptSetCfgReq->tData.unCfg.tV1;

 /* Set the packet command, length and DNS configuration version */
 ptSetCfgReq->tHead.ulCmd = DNS_CMD_SET_CONFIGURATION_REQ;
 ptSetCfgReq->tHead.ulLen = sizeof(DNS_SET_CONFIGURATION_V1_REQ_SIZE);
 ptSetCfgReq->tData.ulVersion = DNS_CONFIGURATION_V1;

 /* Set the slave related parameters */
 memset(ptCfg,0x00,sizeof(DNS_CONFIGURATION_V1_T));
 ptCfg->ulSystemFlags = 0;
 ptCfg->tData.ulWdgTime = 0;

 ptCfg->ulNodeId = 11;
 ptCfg->ulBaudrate = DNS_BAUDRATE_125kB;

 ptCfg->ulConfigFlags = 0;
 ptCfg->ulObjectFlags = 0;

 ptCfg->usVendorId = 283; /* My VendorId */
 ptCfg->usDeviceType = 12; /* My Device type */
 ptCfg->usProductCode = 1; /* My Product code */
 ptCfg->bMajorRev = 1; /* My Product major version */
 ptCfg->bMinorRev = 1; /* My Product minor version */
 ptCfg->bProductNameLen = 15; /* Length of product name */
 memcpy(&ptCfg->abProductName[0],"My Product Name",15);

 ptCfg->ulProduceAsInstance = 101; /* My producing assembly instance */
 ptCfg->ulProduceAsSize = 8; /* My producing assembly size */

 ptCfg->ulConsumeAsInstance = 100; /* My consuming assembly instance */
 ptCfg->ulConsumeAsSize = 8; /* My consuming assembly size */

 return;
}

Application interface 74/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.2.2.2 Set Configuration confirmation

Packet description

Variable Type Value / Range Description
ulLen UINT32 0 DNS_SET_CONFIGURATION_CNF_SIZE
ulSta UINT32 ulSta = 0, initialization OK

ulSta != 0, initialization failed, see section Status and error codes
on page 114.

ulCmd UINT32 0xB101 DNS_CMD_SET_CONFIGURATION_CNF

Table 63: DNS_CMD_SET_CONFIGURATION_CNF – Set Configuration confirmation

Packet structure reference
typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_PACKET_SET_CONFIGURATION_CNF_Ttag
{
 HIL_PACKET_HEADER_T tHead;
} DNS_PACKET_SET_CONFIGURATION_CNF_T;

#define DNS_SET_CONFIGURATION_CNF_SIZE 0

Application interface 75/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.2.3 Create Assembly service
This service allows creating additional assembly objects. Creating additional assembly objects can
be used when more than the two default input and output assembly shall be supported. Creating
assembly objects is only allowed at configuration phase when the DeviceNet Slave stack is in stop
state.

Up to 64 assembly objects are possible:

 The Set Configuration Service creates 2 assembly objects.

 This service can create up to 62 additional assembly objects.

Warning: This service does not cross check for overlapping data with other created assembly
instances. It is in hand of the user for partitioning the DPM correctly. The parameter
ulOffset is used to place or retrieve the assembly data from the right position within the
DPM. If data of different assembly objects overlapping it may lead to process data
inconsistency. On the other hand, it is may explicitly wished to overlap assembly data.

4.2.3.1 Create Assembly request

Packet description

Variable Type Value / range Description
ulLen uint32_t 16 Packet Data Length in bytes

DNS_CREATE_ASSEMBLY_REQ_SIZE

ulCmd uint32_t 0xB10A DNS_CMD_CREATE_ASSEMBLY_REQ
Data
ulInstance uint32_t 1 … 255 Assembly instance to created
ulFlags uint32_t bit field Assembly creation flags:

D0: Assembly Type
D8: Receive Idle option
for details see: Table 65: Assembly configuration flags on page 76

ulSize uint32_t 1 … 255 Size of the assembly to be create in bytes
ulOffset uint32_t 0 … 254 Offset of the assembly data within the dual port memory

Note: The sum of ulOffset + ulSize must not exceed 254
Note: In case the assembly option flag D8 is set for mapping the Run /
Idle information into DPM, then the offset is start of the Run/Idle
header. The start of the assembly data is offset + 4.
See also section Process data status on page 111

Table 64: DNS_CMD_CREATE_ASSEMBLY_REQ – Create Assembly request

Application interface 76/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Packet structure reference
typedef struct DNS_CREATE_ASSEMBLY_Ttag {
 uint32_t ulInstance;
 uint32_t ulFlags;
 uint32_t ulSize;
 uint32_t ulOffset;
} DNS_CREATE_ASSEMBLY_T;

#define DNS_CREATE_ASSEMBLY_REQ_SIZE (sizeof(DNS_CREATE_ASSEMBLY_T))

typedef struct DNS_PACKET_CREATE_ASSEMBLY_REQ _Ttag {
 HIL_PACKET_HEADER_T tHead;
 DNS_CREATE_ASSEMBLY_T tData;
} DNS_PACKET_ CREATE_ASSEMBLY_REG_T;

Parameter: ulFlags (Assembly creation flags)

Bit Description
D0 Assembly type

0: If this flag is not set, the created assembly instance is a consuming assembly. The data received from the
network are place into the input area of the DPM image.
1: If this flag is set, the created assembly instance is a producing assembly. The data are transmitted to the
network and taken from the output area of the DPM image.

D8 Receive Idle option:
0: If this flag is zero the "receive / idle" information is not placed into the DPM (default)
1: If this flag is set, "receive / idle" information will be placed additionally in front of the assembly data into the
input image of the DPM for this assembly. This flag is only applicable for output assemblies.
“Receive / Idle” is a 32-Bit value (4 bytes). This number of bytes must not be included into the assembly size
configuration (ulSize).

D9 Sequence Counter option:
0: If this flag is zero the sequence counter is not placed into the DPM (default)
1: If this flag is set a "sequence counter" information is placed additionally in front of the assembly data into
the input image of the DPM for this assembly. This flag is only applicable for output assemblies.
“Sequence counter” is a 32-Bit value (4 bytes).. For details, refer to chapter Process data status on page 111.
This number of bytes must not be included into assembly size configuration (ulSize).

Others Reserved.
Table 65: Assembly configuration flags

4.2.3.2 Create Assembly confirmation

Packet structure reference
typedef struct DNS_PACKET_CREATE_ASSEMBLY_CNF _Ttag {
 HIL_PACKET_HEADER_T tHead;
} DNS_PACKET_CREATE_ASSEMBLY_CNF_T;

Packet description

Variable Type Value / Range Description
ulLen uint32_t 0 Packet Data Length in bytes
ulSta uint32_t See section Status and error codes on page 114.
ulCmd uint32_t 0xB10B DNS_CREATE_ASSEMBLY_CNF

Table 66: DNS_CMD_CREATE_ASSEMBLY_CNF – Register Class confirmation

Application interface 77/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3 Explicit Messaging services
4.3.1 General
Explicit messaging in terms of DeviceNet means the acyclic communication based on the CIP
addressing model “Service / Class / Instance / Attribute”. Two pairs of packets of the DeviceNet
Slave stack cover the explicit messaging services.

DNS_CIP_SERVICE_REQ/CNF – The host application sends this service to the local DeviceNet
Slave stack.

DNS_CIP_SERVICE_IND/RES – The DeviceNet Slave stack sends this service to the host
application. It is typically issued when a DeviceNet Master is requesting CIP specific data from the
DeviceNet slave.

A service is specified by

 the service code to be performed

 the addressed scheme “Class + Instance + Attribute”

 the service specific data

 the General and Extended error decoding (GRC/ERC) in case of a failure

For both packets, the same CIP denotation is used.

Application interface 78/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3.2 CIP Service sent from application
This packet is used to perform a CIP service from the host application to any object of the local
DeviceNet Slave stack. A list of pre-defined service codes by the CIP specification are listed in
section CIP defined Service Codes on page 15.

Note: Not every service is available on every object. The list of supported services for each
supported object by the DeviceNet Slave stack is described in section Object classes
on page 18.

Depending on the service the data field abData[]of the packet is used to submit service related
data (e.g. the attribute value in case of Set_Attribute_Single) or the data field in the confirmation
packet contains the requested data (e.g. the attribute value in case of Get_Attribute_Single).

In case of successful execution, the variable ulSta of the confirmation packet will have the value
SUCCESS_HIL_OK and the CIP specific error codes ulGRC and ulERC will be 0. In case of an
error the variable ulSta of the confirmation packet will have value ERR_HIL_FAIL. The variables
ulGRC and ulERC of the confirmation packet will contain CIP specific error codes.

Figure 15: DNS_CMD_SERVICE_REQ/CNF sequence diagram

Application interface 79/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3.2.1 CIP Service request

Packet description

Variable Type Value / Range Description
ulLen uint32_t 20 + n Packet Data Length in bytes

DNS_CIP_SERVICE_REQ_SIZE + n
ulCmd uint32_t 0xB102 DNS_CMD_CIP_SERVICE_REQ
tData
ulService uint32_t Valid Service

Code
Service code according CIP specification

ulClass uint32_t Valid Class ID Class ID
See supported objects listed in section Object classes on page
18.
(also refer to [5], Chapter 5A, Table 5A-1.1)

ulInstance uint32_t Valid Instance
ID

Instance ID of the class specified by usClassId
See supported object instances listed in section Object classes
on page 18.

ulAttribute uint32_t Valid Attribute
ID

Attribute ID of an instance specified by usInstanceId.
See supported object attributes listed in section Object classes
on page 18.

ulMember uint32_t Valid Member
ID

Members ID
Set to 0 per default.
The only service supporting the MemberID is “Get Member” for
the assembly object attribute 2.

abData[] uint8_t[] Service data
Table 67: DNS_CMD_CIP_SERVICE_REQ – CIP Service request

Packet structure reference
typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_CIP_SERVICE_REQ_Ttag
{
 uint32_t ulService;
 uint32_t ulClass;
 uint32_t ulInstance;
 uint32_t ulAttribute;
 uint32_t ulMember;
 uint8_t abData[DNS_CIP_SERVICE_MAX_DATA_LEN];
} DNS_CIP_SERVICE_REQ_T;

typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_PACKET_CIP_SERVICE_REQ_Ttag
{
 HIL_PACKET_HEADER_T tHead;
 DNS_CIP_SERVICE_REQ_T tData;
}DNS_PACKET_CIP_SERVICE_REQ_T;

Application interface 80/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3.2.2 CIP Service confirmation

Packet description

Variable Type Value / Range Description
ulLen UINT32 28 + n Packet Data Length in bytes
ulSta UINT32 See section Status and error codes on page 114.
ulCmd UINT32 0xB103 DNS_CMD_CIP_SERVICE_CNF
tData
ulService uint32_t Valid Service Code Service returned from request

ulClass uint32_t Valid Class ID Class ID returned from request

ulInstance uint32_t Valid Instance ID Instance ID returned from request

ulAttribute uint32_t Valid Attribute ID Attribute ID returned from request
ulMember uint32_t Valid Member ID Member ID returned from request
ulGRC uint32_t General error code, see Table 12 on page 16.
ulERC uint32_t Additional error code.
abData [] uint8_t[] Service data

Table 68: DNS_CMD_CIP_SERVICE_CNF – CIP Service confirmation

Packet structure reference
typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_CIP_SERVICE_CNF_Ttag
{
 uint32_t ulService;
 uint32_t ulClass;
 uint32_t ulInstance;
 uint32_t ulAttribute;
 uint32_t ulMember;
 uint32_t ulGRC;
 uint32_t ulERC;
 uint8_t abData[DNS_CIP_SERVICE_MAX_DATA_LEN];
} DNS_CIP_SERVICE_CNF_T;

typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_PACKET_CIP_SERVICE_CNF_Ttag
{
 HIL_PACKET_HEADER_T tHead;
 DNS_CIP_SERVICE_CNF_T tData;
}DNS_PACKET_CIP_SERVICE_CNF_T;

#define DNS_CIP_SERVICE_CNF_SIZE ((sizeof(DNS_CIP_SERVICE_CNF_T) - \
 DNS_CIP_SERVICE_MAX_DATA_LEN))

Application interface 81/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3.3 Register Class Service
The DeviceNet Slave stack has the option to forward explicit services like Get_Attribute or
Set_Attribute or other services to the user application.

Therefore, the user must register the corresponding class within the stack to get these services.
This must be done for each class the user wants to have the explicit service indications.

Figure 16: DNS_CMD_REGISTER_CLASS_REQ/CNF - sequence diagram

Application interface 82/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3.3.1 Register Class request

Packet description

Variable Type Value / range Description
ulLen uint32_t 8 Packet Data Length in bytes

sizeof(DNS_REGISTER_CLASS_T)
ulCmd uint32_t 0xB106 DNS_REGISTER_CLASS_REQ
Data
ulClass uint32_t 1,

3 … 42,
44 ... 255

Class ID
according reference [5], Chapter 5A, Table 5A-1.1

ulServiceMask uint32_t 0x00000000
…
0xFFFFFFF

Services registration to be forwarded to the host application
0: All services are forwarded to the application (default)
n: Only selected services are forwarded to the application
The application has to interpret this value as a bit field. Each bit
represents a service, according Table 71 on page 84.
Note: For registration of a user specific Class ID, which are not
handled by the stack ‘ulServiceMask’, is not considered by the stack.
In this case, the value of ‘ulServiceMask’ must be set to 0. For user
specific objects all services are forwarded to the host,

Table 69: DNS_CMD_REGISTER_CLASS_REQ – Register Class request

Packet structure reference
typedef struct DNS_REGISTER_CLASS_Ttag {
 uint32_t ulClass;
 uint32_t ulServiceMask;
} DNS_REGISTER_CLASS_T;

#define DNS_REGISTER_CLASS_REQ_SIZE (sizeof(DNS_REGISTER_CLASS_T))

typedef struct DNS_PACKET_REGISTER_CLASS_REQ _Ttag {
 HIL_PACKET_HEADER_T tHead;
 DNS_REGISTER_CLASS_T tData;
} DNS_PACKET_REGISTER_CLASS_REG_T;

Application interface 83/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Parameter ulClass

The table below shows, which object classes the application, can register within the DeviceNet
Slave stack.

Class Description Registration allowed
0x01 Identity
0x02 Message Router
0x03 DeviceNet
0x04 Assembly Object
0x05 Connection Object
0x06 Connection Manager Object
0x07 – 0x2A CIP pre-defined Objects
0x2B Acknowledge Handler
0x2C – 0xFF CIP pre-defined Objects
0x402 IO Mapping Object
0x404 Module and Network Status Object

Table 70: DNS_CMD_REGISTER_CLASS_REQ – Register Class limitations

 - The application can register this object without any limitations, all requests from the network
will be forwarded to host application.

 - The application can register this object only with individual limitations, because the stack
handles these objects by itself.

 A service is NOT forwarded, if the service is directed to an attribute that is handled by the
DeviceNet Slave stack itself according section Object classes on page 18. This includes all
class attributes and instance attributes.

 A service is NOT forwarded, if the service was excluded from registration by the parameter
ulServiceMask.

 A service IS forwarded, if the service is directed to an attribute or class instance that is not
handled by the DeviceNet Slave stack itself.

 - The object cannot be registered.

Application interface 84/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Parameter ulServiceMask

This parameter is a filter to allow forwarding of selective service codes to the host application. The
application should interpret this parameter as a bit field. If set to 0, all services are forwarded to the
host. As soon as one or more bits are set, only the selected services are sent to the host.

Bit position Service code Service name
0 0x00 Reserved
1 0x01 Get_Attributes_All
2 0x02 Set_Attributes_All
3 0x03 Get_Attribute_List
4 0x04 Set_Attribute_List
5 0x05 Reset
6 0x06 Start
7 0x07 Stop
8 0x08 Create
9 0x09 Delete
10 0x0A Multiple_Service_Packet
11, 12 0x0B, 0x0C Reserved for future use
13 0x0D Apply_Attributes
14 0x0E Get_Attribute_Single
15 0x0F Reserved for future use
16 0x10 Set_Attribute_Single
17 0x11 Find_Next_Object_Instance
18, 19 0x12, 0x13 Reserved for future use
20 0x14 Error Response
21 0x15 Restore
22 0x16 Save
23 0x17 No Operation (NOP)
24 0x18 Get_Member
25 0x19 Set_Member
26 0x1A Insert_Member
27 0x1B Remove_Member
28 0x1C GroupSync
29-31 0x1D–0x1F Reserved for additional Common Services

Table 71: Service Codes depending to the bit position

Application interface 85/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3.3.2 Register Class confirmation

Packet structure reference
typedef struct DNS_REGISTER_CLASS_Ttag
{
 uint32_t ulClass;
 uint32_t ulServiceMask;
} DNS_REGISTER_CLASS_T;

typedef struct DNS_FAL_PACKET_REGISTER_CLASS_CNF_Ttag
{
 HIL_PACKET_HEADER_T tHead;
 DNS_REGISTER_CLASS_T tData;
} DNS_PACKET_REGISTER_CLASS_CNF_T;

Packet description

Variable Type Value / Range Description
ulLen uint32_t 8 Packet Data Length in bytes

sizeof(DNS_REGISTER_CLASS_T)
ulSta uint32_t See section Status and error codes on page 114.
ulCmd uint32_t 0xB107 DNS_CMD_REGISTER_CLASS_CNF
tData
ulClass uint32_t 1, 3 … 42,

44 ... 255
Class ID
value returned from the request

ulServiceTyp uint32_t 0x00000000
....
0xFFFFFFFF

Service registration
value returned from the request

Table 72: DNS_CMD_REGISTER_CLASS_CNF – Register Class confirmation

Application interface 86/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3.4 Unregister Class service
This command will unregister a previously registered class. If unregistering successfully, the service to the
class will (no longer) be passed through to the host application.

4.3.4.1 Unregister Class request

Packet description

Variable Type Value / Range Description
ulLen unit32 8 Packet Data Length in bytes

sizeof(DNS_UNREGISTER_CLASS_T)
ulCmd uint32 0xB108 DNS_CMD_UNREGISTER_CLASS_REQ

tData
ulClass uint32_t 1,

3 … 42,
44 ... 255

Class ID
(according reference [5], Chapter 5A, Table 5A-1.1)

ulServiceMask uint32 0 Reserved unused, set to 0
Table 73: DNS_CMD_UNREGISTER_CLASS_REQ – Unregister Class request

Packet structure reference
typedef struct DNS_UNREGISTER_CLASS_Ttag
{
 uint32_t ulClass;
 uint32_t ulAccessTyp;
} DNS_UNREGISTER_CLASS_T;

#define DNS_UNREGISTER_CLASS_REQ_SIZE (sizeof(DNS_UNREGISTER_CLASS_T))

typedef struct DNS_PACKET_UNREGISTER_CLASS_REQ _Ttag
{
 HIL_PACKET_HEADER_T tHead;
 DNS_UNREGISTER_CLASS_T tData;
} DNS_PACKET_UNREGISTER_CLASS_REG_T;

Application interface 87/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3.4.2 Unregister Class confirmation

This command confirms the unregistration from the requested class.

Note: The unregistration confirms successfully regardless, whether the class has been
registered before, or not.

Packet description

Variable Type Value / Range Description
ulLen UINT32 8 Packet Data Length in bytes

sizeof(DNS_UNREGISTER_CLASS_T)
ulSta uint32_t See section Status and error codes on page 114.
ulCmd UINT32 0xB109 DNS_CMD_UNREGISTER_CLASS_CNF

tData
ulClass UINT32 Class ID
ulAccessTyp UINT32 0 Reserved unused, set to 0

Table 74: DNS_CMD_UNREGISTER_CLASS_CNF – Unregister Class confirmation

Packet structure reference
Packet Structure Reference
/* DNS_FAL_CMD_UNREGISTER_CLASS_REQ Structure */
typedef struct DNS_FAL_UNREGISTER_CLASS_Ttag
{
 TLR_UINT32 ulClass;
 TLR_UINT32 ulAccessTyp;
}
DNS_FAL_UNREGISTER_CLASS_T;

typedef struct DNS_FAL_PACKET_UNREGISTER_CLASS_CNF_Ttag
{
 TLR_PACKET_HEADER_T tHead;
 DNS_FAL_UNREGISTER_CLASS_T tData;
}
DNS_FAL_PACKET_UNREGISTER_CLASS_CNF_T

Application interface 88/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3.5 CIP Service sent by a master
This packet indicates that the remote DeviceNet Master has requested a service from the Slave.
The user receives the service indication only for those classes that have been registered to the
DeviceNet Slave stack.

Figure 17: DNS_CMD_SERVICE_IND/RES sequence diagram

This packet is typically used to implement a user- or profile-specific object within the application
context.

Application interface 89/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3.5.1 CIP Service indication

Packet description

Variable Type Value / Range Description
ulLen uint32_t 20 + n Packet Data Length in bytes

(DNS_CIP_SERVICE_IND_SIZE+n)
ulCmd uint32_t 0xB104 DNS_CMD_CMD_SERVICE_IND

tData
ulService uint32_t Service Code Service Code; see CIP defined Service Codes on page 15.
ulClass uint32_t Class ID Class ID
ulInstance uint32_t Instance ID Class Instance ID
ulAttribute uint32_t Attribute ID Attribute ID
ulMember uint32_t Member ID Member ID
abData[] uint8_t[] Service data (n bytes - depending on service)

Table 75: DNS_CMD_SERVICE_IND – CIP Service indication

Packet structure reference
typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_CIP_SERVICE_REQ_Ttag
{
 uint32_t ulService;
 uint32_t ulClass;
 uint32_t ulInstance;
 uint32_t ulAttribute;
 uint32_t ulMember;
 uint8_t abData[DNS_CIP_SERVICE_MAX_DATA_LEN];
} DNS_CIP_SERVICE_REQ_T;

#define DNS_CIP_SERVICE_IND_T DNS_CIP_SERVICE_REQ_T

typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_PACKET_CIP_SERVICE_IND_Ttag
{
 HIL_PACKET_HEADER_T tHead;
 DNS_CIP_SERVICE_IND_T tData;
}DNS_PACKET_CIP_SERVICE_IND_T;

#define DNS_CIP_SERVICE_IND_SIZE (sizeof(DNS_CIP_SERVICE_IND_T) - \
 DNS_CIP_SERVICE_MAX_DATA_LEN)

Application interface 90/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3.5.2 CIP Service response

Packet structure reference
typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_CIP_SERVICE_CNF_Ttag
{
 uint32_t ulService;
 uint32_t ulClass;
 uint32_t ulInstance;
 uint32_t ulAttribute;
 uint32_t ulMember;
 uint32_t ulGRC;
 uint32_t ulERC;
 uint8_t abData[DNS_CIP_SERVICE_MAX_DATA_LEN];
} DNS_CIP_SERVICE_CNF_T;

#define DNS_CIP_SERVICE_RES_T DNS_CIP_SERVICE_RES_T

typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_PACKET_CIP_SERVICE_IND_Ttag
{
 HIL_PACKET_HEADER_T tHead;
 DNS_CIP_SERVICE_IND_T tData;
}DNS_PACKET_CIP_SERVICE_IND_T;

#define DNS_CIP_SERVICE_CNF_SIZE (sizeof(DNS_CIP_SERVICE_IND_T) - \
 DNS_CIP_SERVICE_MAX_DATA_LEN)

Packet description

Variable Type Value / Range Description
ulLen uint32_t 28 + n Packet Data Length in bytes (DNS_CIP_SERVICE_RES_SIZE+n)

n = 0 in case of error or no response data to the service
n != 0 in case of service response data, number of bytes in abData[]

ulSta uint32_t Set to SUCCESS_HIL_OK in case of service execution success
Set to ERR_HIL_FAIL in case of service execution failed.
In this case, additionally ulGRC and ulERC must be set.
Other return values are not allowed.

ulCmd uint32_t 0xB105 DNS_CMD_SERVICE_RES

tData
ulService uint32_t Service Code Service Code
ulClass uint32_t Class ID return value from request
ulInstance uint32_t Instance ID return value from request
ulAttribute uint32_t Attribute ID return value from request
ulMember uint32_t Member ID return value from request
ulGRC uint32_t Generic Error Code

Set to 0 in case of service execution success.
Set to a valid CIP defined error code in case service execution failed;
see section CIP defined General Status Codes on page 16.

 ulERC uint32_t Extended Error Code
Set to 0 in case of no additional error code. (default)
For additional error code definition and rules, see section CIP defined
Extended Status Codes on page 17.

abData[] uint8_t[] Service data (n bytes - depending on service)
Table 76: DNS_CMD_SERVICE_RES – CIP Service response

Application interface 91/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3.6 Reset service
The stack sends the reset indication to the host whenever a reset of the device is required. It
provides a notification about a reset that has been requested. The stack will not perform the reset
procedure on its own. The host itself must perform the reset after the reset indication has been
received.

When the host receives the reset indication, it must respond to the received packet. The host can
either accept the reset or reject it with a corresponding error code. The reset indication can be
caused either by a reset service from a remote device to the identity object instance 1 or by a stack
internal requirement. In case of a reset requested via network, the stack will return the response to
the sender.

Figure 18: DNS_CMD_RESET_IND/RES sequence diagram

Note: The stack will send a reset indication to the application after the host has used the
command HIL_REGISTER_APP_REQ. In this case, the host is responsible to perform
the reset. Performing a reset by the host means, the application has to start over a
complete configuration procedure like after power-on.

Note: A reset request to the identity an object via network to an instance different to 1 or a
reset service to other objects is forwarded as CIP_SERVICE_IND.

Application interface 92/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3.6.1 Reset indication

Packet description

Variable Type Value / Range Description
ulLen uint32_t 8 sizeof(DNS_RESET_IND_T)
ulCmd uint32_t 0xB10C DNS_CMD_RESET_IND

tData
ulReason uint32_t 0;1;2;3 Reset reason; see Table 78 on page 93.
ulType uint32_t 0 … 255 Reset type; see Table 79 on page 94.

Table 77: DNS_CMD_RESET_IND – Reset indication

Packet structure reference

typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_RESET_IND_Ttag
{
 uint32_t ulReason; /*!< Reset reason */
 uint32_t ulType; /*!< Reset type */
} DNS_RESET_IND_T;

typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_PACKET_RESET_IND_Ttag
{
 HIL_PACKET_HEADER_T tHead;
 DNS_RESET_IND_T tData;
}DNS_PACKET_RESET_IND_T;

#define DNS_RESET_IND_SIZE (sizeof(DNS_RESET_IND_T)

Application interface 93/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Parameter ulReason

This parameter provides an information about the reason of the reset.

Value Define / description
0 DNS_RESET_REASON_ID_OBJECT_NET_RESET

The reset is requested to instance 1 of the identity object. It could have been received via network
from a master or commissioning tool or by the host itself via CIP service request. Additionally, the
reset type is indicated.
Note: If the host itself triggers the reset indication via CIP service request, the reset type is coded into
the first byte in the service data field abData[] of the CIP service request.

1 DNS_RESET_REASON_DN_OBJECT_MACID_SET
The reset is required because a master or commissioning tool has set the MAC ID attribute of the
DeviceNet object. This requires a reset to go online with the new MAC ID.

2 DNS_RESET_REASON_NP_RESUME_SWITCH_CHANGE
This reason can only appear when the switch support for MAC ID and/or Baud rate is enabled. The
reset is required because one or both of the switch values have been changed at runtime and the
24V network power was released and resumed.

3 DNS_RESET_REASON_NETWOK_POWER_CHANGE
This type of reset indication is for informational purposes only. host application does not require any
explicit reset activity. The host application can use this type of indication to monitor the 24V network
power. The reset indication will be sent when the 24V network power is lost or resumed.
Note: In order to indicate this reason to the host, it must be explicitly activated by setting the flag
DNS_CFG_FLAG_INDICATION_NETWORK_POWER in the set configuration packet.
The stack has a latch mechanism for the 24V NP indication. It will not send a new indication until the
host has sent the response from a previous one. The stack does not send an initial state indication of
the 24V trunk power at startup. The application has to start with the assumption that the 24V NP is
present. Only when the 24V trunk power is mission at startup a corresponding indication will be send.

Table 78: DNS_RESET_IND – reset reason

Application interface 94/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Parameter ulType

This parameter provides additional information to the reset reason. The table below lists possible
values of ‘ulType’ depending on the reset reason. In case of reset reason 0 (when the reset is
received from the network and directed to the identity object), then the parameter ‘ulType’ contains
additional information to the reset reason that has to be performed by the host. The host has to
perform the reset or can reject with an appropriate error code, e.g. if the type is not supported or
invalid or the device is in a state not to allow the reset.

Value
of

ulType

Description / define

Reset Reason: ‘DNS_RESET_REASON_ID_OBJECT_NET_RESET’
0 Power Cycle

Emulate as closely as possible cycling power on the item the Identity Object represents.
1 Factory default

Return as closely as possible to the factory default configuration, and then emulate cycling power as
closely as possible.

2 Return to Factory Defaults except Communications Parameters
Note: This type of reset is forwarded to the host application only. The stack does not support or handle
this type of reset. If the stack receives this type of reset, the application has to reset its own parameter to
factory default values. The communication parameters like node id or baud rate shall not be reset.

3 – 99 Reserved reset types by CIP specification, not forwarded to host application.
or

100 - 199 By CIP specification, “User specific” reset types. The master or commissioning tool may send other types
of reset, which are user specific. In this case, the host has to perform a user-specific reset procedure or
reject with appropriate error code.
Note: User-specific reset types are forwarded to the host application only. The stack does not handle or
support this type of reset.

200 - 255 Reserved reset types by CIP specification, not forwarded to host application.

Reset Reason: ‘DNS_RESET_REASON_DN_OBJECT_MACID_SET’
Reset Reason: ‘DNS_RESET_REASON_NP_RESUME_SWITCH_CHANGE’
0 Power Cycle

Emulate as closely as possible cycling power on the item the Identity Object represents.
1..255 Reserved, not used for this reset reason

Reset Reason: ‘DNS_RESET_REASON_NETWOK_POWER_CHANGE’
3 DNS_RESET_TYPE_NP_MISSING

This value indicates that the 24V network power is missing. There is no explicit reset activity required by
the host application. The host application can use this type of indication to monitor the 24V network
power. It will be sent when the 24V network power is lost.

4 DNS_RESET_TYPE_NP_PRESENT
This value indicates that the 24V network is present or is resumed.

0,1,2,5..255 This value indicates that the 24V network power is missing. There is no explicit reset activity required by
the host application. The host application can use this type of indication to monitor the 24V network
power. It will be sent when the 24V network power is returned back.

Table 79: DNS_RESET_IND – Reset types depending on Reset Reason

Application interface 95/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.3.6.2 Reset response

Packet description

Variable Type Value / Range Description
ulLen uint32_t 16 Packet Data Length in bytes

sizeof(DNS_RESET_RES_T)

ulSta uint32_t 0 or 1 Set to SUCCESS_HIL_OK in case of accepting the service
Set to ERR_HIL_FAIL and additional error code (ulGRC) when the
reset is not accepted.
See section Status and error codes on page 114.

ulCmd uint32_t 0xB10D DNS_CMD_RESET_RES

tData
ulReason uint32_t 0; 1; 2 Reset reason, return value from indication
ulType uint32_t 0 … 255 Reset type, return value from indication
ulGRC uint32_t 0 or n General error code

Set to default value 0 in case of success, or set an error code when
the reset is not accepted. For appropriate value see CIP defined
General Status Codes on page 16

ulERC uint32_t 0 or n Additional error code
The default value is 0. For more information, see
CIP defined Extended Status Codes on page 17

Table 80: DNS_CMD_RESET_RES – Reset response

Packet structure reference

typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_IF_CIP_SERVICE_CNF_Ttag
{
 uint32_t ulReason; /*!< Reset reason */
 uint32_t ulType; /*!< Reset type */
 uint32_t ulGRC; /*!< Generic Error Code */
 uint32_t ulERC; /*!< Extended Error Code */

} DNS_RESET_RES_T;

typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_PACKET_RESET_RES_Ttag
{
 HIL_PACKET_HEADER_T tHead;
 DNS_RESET_RES_T tData;
}DNS_PACKET_RESET_RES_T;

#define DNS_RESET_RES_SIZE (sizeof(DNS_RESET_RES_T)

Application interface 96/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.4 Diagnostic service
4.4.1 Diag service

Figure 19: DNS_CMD_DIAG_REQ/CNF - Sequence diagram

The application can use the diagnostic service to retrieve different diagnostic information from the
DeviceNet slave stack.

Four types of diagnostic information can be read from stack:

 DNS_DIAG_TYPE_COMMON

This diagnostic type is a collection of the most useful information about the status of the
DeviceNet slave stack.

 DNS_DIAG_TYPE_COMMAND

This diagnostic structure is a counter diagnostic about services exchanged between stack
and host application.

 DNS_DIAG_TYPE_CAN

This diagnostic structure contains detailed information about the CAN Data Link layer.

 DNS_DIAG_TYPE_RESOURCES

This diagnostic contains information about some resource allocation of the stack.

Application interface 97/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.4.1.1 Diag request

Packet description

Variable Type Value / range Description
ulLen uint32_t 4 sizeof(DNS_DIAG_REQ_T)
ulCmd uint32_t 0xB10E DNS_CMD_DIAG_REQ
Data
ulDiagType uint32_t 0,1,2,3 Diagnostic type to request

0: collection of common useful diagnostic information
1: service counter diagnostic between stack and host application
2: CAN network related diagnostic
3: stack resource allocation information

Table 81: DNS_CMD_DIAG_REQ – Diagnostic request

Packet structure reference
/*! \brief Diagtypes. */
#define DNS_DIAG_TYPE_COMMON 0
#define DNS_DIAG_TYPE_COMMAND 1
#define DNS_DIAG_TYPE_CAN 2
#define DNS_DIAG_TYPE_RESOURCES 3

/*! \brief Diag Request data. */
typedef struct DNS_DIAG_REQ_Ttag
{
 uint32_t ulDiagType;
}DNS_DIAG_REQ_T;

/*! \brief Diag Request packet. */
typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_PACKET_DIAG_REQ_Ttag
{
 HIL_PACKET_HEADER_T tHead; /*!< Packet header. */
 DNS_DIAG_REQ_T tData; /*!< Diag Request Data. */
}DNS_PACKET_DIAG_REQ_T;

Application interface 98/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.4.1.2 Diag confirmation

Packet description

Variable Type Value / Range Description
ulLen uint32_t 4 + n Packet Data Length in bytes

For ulDiagType = 0 in request packet DNS_DIAG_REQ:
sizeof(uint32_t) + (sizeof(DNS_DIAG_COMMON_T))
For ulDiagType = 1 in request packet DNS_DIAG_REQ:
sizeof(uint32_t) + (sizeof(DNS_DIAG_COMMAND_T))
For ulDiagType = 2 in request packet DNS_DIAG_REQ:
sizeof(uint32_t) + (sizeof(DNS_DIAG_CAN_T))
For ulDiagType = 3 in request packet DNS_DIAG_REQ:
sizeof(uint32_t) + (sizeof(DNS_DIAG_RESOURCE_T))

ulSta uint32_t See section Status and error codes on page 114.
ulCmd uint32_t 0xB10F DNS_DIAG_CNF
tData
ulDiagType uint32_t 0,1,2,3 Diagnostic type returned from request
uDiag union Union of four different diagnostic structures:

For ulDiagType = 0 in request packet DNS_DIAG_REQ:
DNS_DIAG_COMMON_T tCom;
For ulDiagType = 1 in request packet DNS_DIAG_REQ:
DNS_DIAG_COMMAND_T tCmd;
For ulDiagType = 2 in request packet DNS_DIAG_REQ:
DNS_DIAG_CAN_T tCan;
For ulDiagType = 3 in request packet DNS_DIAG_REQ:
DNS_DIAG_RESOURCE_T tRsc;

Table 82: DNS_DIAG_CNF – Diag confirmation

Application interface 99/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Packet structure reference
/*! \brief Diag Confirmation Data union. */
typedef __HIL_PACKED_PRE union __HIL_PACKED_POST DNS_DIAG_Utag
{
 DNS_DIAG_COMMON_T tCom;
 DNS_DIAG_COMMAND_T tCmd;
 DNS_DIAG_CAN_T tCan;
 DNS_DIAG_RESOURCE_T tRsc;

}DNS_DIAG_U;

/*! \brief Diag Confirmation Data. */
typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_DIAG_CNF_Ttag
{
 uint32_t ulDiagType; /*!< Diagnostic type */
 DNS_DIAG_U uDiag; /*!< Union of different diagnostic types */
}DNS_DIAG_CNF_T;

/*! \brief Diag Confirmation packet. */
typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST DNS_PACKET_DIAG_CNF_Ttag
{
 HIL_PACKET_HEADER_T tHead; /*!< Packet header. */
 DNS_DIAG_CNF_T tData; /*!< Diag Confirmation Data. */
}DNS_PACKET_DIAG_CNF_T;

/*! Size of Diag Confirmation. */
#define DNS_DIAG_CNF_SIZE_MIN (sizeof(uint32_t))

#define DNS_DIAG_CNF_SIZE_COMMON (sizeof(uint32_t)) + (sizeof(DNS_DIAG_COMMON_T))
#define DNS_DIAG_CNF_SIZE_COMMAND (sizeof(uint32_t)) + (sizeof(DNS_DIAG_COMMAND_T))
#define DNS_DIAG_CNF_SIZE_CAN (sizeof(uint32_t)) + (sizeof(DNS_DIAG_CAN_T))
#define DNS_DIAG_CNF_SIZE_RESOURCE (sizeof(uint32_t)) + (sizeof(DNS_DIAG_RESOURCE_T))

Application interface 100/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Diagnostic Type0 – Common stack information
typedef struct DNS_PROTOCOL_INFO_Ttag{
 uint8_t bCurrentNodeId;
 uint8_t bCurrentBaudrate;
 uint8_t bNetwokPower;
 uint8_t bNetworkAccessState;
 uint8_t bModuleStatus;
 uint8_t bNetworkStatus;
 uint16_t usReserved;

}DNS_PROTOCOL_INFO_T;

typedef struct DNS_SWITCH_INFO_Ttag{
 uint8_t bNodeSwitchEnable;
 uint8_t bNodeSwitchValue;
 uint8_t bBaudrateSwitchEnable;
 uint8_t bBaudrateSwitchValue;

}DNS_SWITCH_INFO_T;

typedef struct DNS_CAN_INFO_Ttag{
 uint32_t ulCanState;
 uint32_t ulCanRxCnt;
 uint32_t ulCanTxCnt;
 uint32_t ulCanRxOverRunCnt;
 uint32_t ulCanTxOverRunCnt;
 uint32_t ulCanTxAbortCnt;

 uint32_t ulCanErrWarningCnt
 uint32_t ulCanErrPassiveCnt;
 uint32_t ulCanErrBusOffCnt;

}DNS_CAN_INFO_T;

typedef struct DNS_CONN_INFO_Ttag{
 uint8_t bAllocChoice;
 uint8_t bMasterMacId;
 uint16_t usReserved;
}DNS_CONN_INFO_T;

typedef struct DNS_CONN_INST_INFO_Ttag{
 uint16_t usProduceSize;
 uint16_t usProduceAsmInst;
 uint16_t usConsumeSize;
 uint16_t usConsumeAsmInst;

}DNS_CONN_INST_INFO_T;

typedef struct DNS_DIAG_COMMON_Ttag
{
 uint32_t ulStatusFlags;

 DNS_PROTOCOL_INFO_T tProtocolInfo;
 DNS_SWITCH_INFO_T tSwitchInfo;
 DNS_CAN_INFO_T tCanInfo;
 DNS_CONN_INFO_T tConnInfo;

 #define DNS_CONN_INFO_INST_POLL 0
 #define DNS_CONN_INFO_INST_STROBE 1
 #define DNS_CONN_INFO_INST_COS_CYC 2

 DNS_CONN_INST_INFO_T tConnInfoInst[3];
}DNS_DIAG_COMMON_T;

Application interface 101/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Variable Type Value Description
ulStatusFlags uint32_t Bit field Collective status information of the stack as a bit field

MSK_DNS_ …

D0: STATUS_FLAG_CONFIG_VALID

The stack has a valid configuration.

D1: STATUS_FLAG_BUS_START

The stack is allowed to release the network communication.
(refer to section Start / Stop Communication on page 107)

D2: STATUS_FLAG_24V_NETWORK_POWER

If ‘0’ no network power is present.
If ‘1’ 24 V network power is present.

D3: STATUS_FLAG_NETWORK_STATE_ONLINE

If ‘0’ the stack is not present to the network.
If ‘1’ the stack online to the network and has passed the
duplicate mac id check procedure.

D16: STATUS_FLAG_ERR_DUP_MAC

The stack detected a slave with the same mac id and went to
the duplicate mac fault.

D17: STATUS_FLAG_ERR_CAN_BUS_OFF

The stack detected a CAN BUS OFF event. To recover from
this state a manual intervention is required. (Power cycle the
device or resume the 24 V network power).

D18: STATUS_FLAG_ERR_MAJOR_UNRECOVERABLE

A major unrecoverable fault has been detected.

D4 - D15; D19 - D31 reserved

DNS_PROTOCOL_INFO_T tProtocolInfo
bCurrentNodeId uint8_t 0 ... 63 Current node id that the device is online to the network
bCurrentBaudrate uint8_t 0, 1, 2 Current baud rate that the device is online to the network
bNetwokPower uint8_t 0, 1 Present of 24V network power

0 – no network power
1 – 24V network power is present

bNetworkAccessState uint8_t 1 … 4 This value represents the state machine for network access
according to the DeviceNet norm.

0 – the device is marked as non-existent
1 – the device is trying to send the duplicate MAC ID request
2 – the device is waiting for a duplicate MAC ID response
3 – the device is online to the network
4 – the device is in the communication fault state

bModuleStatus uint8_t 0 ... 5 This value contains the module status described in Table 40 (page
34)

bNetworkStatus uint8_t 0 … 5 This value contains the network status as described in Table 41
(page 35)

usReserved uint16_t 0 reserved

DNS_SWITCH_INFO_T tSwitchInfo
bNodeSwitchEnable uint8_t 0, 1 If ‘1’ the node id is enabled to be configured by a rotary switch
bNodeSwitchValue uint8_t 0 … 99 Current position of the node id rotary switch
bBaudrateSwitchEnable

uint8_t 0, 1 If ‘1’ the baud rate is enabled to be configured by a rotary switch

Application interface 102/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Variable Type Value Description
bBaudrateSwitchValue uint8_t 0 … 99 Current position of the baud rate rotary switch

DNS_CAN_INFO_T tCanInfo
ulCanState uint32_t 0, 1, 2, 3 0: Active state

1: Error warning state
2: Error passive state
3: Bus Off state

ulCanRxCnt uint32_t n Number of CAN frames sent from the stack to the CAN controller
ulCanTxCnt uint32_t n Number of CAN frames received by the stack from the CAN

controller
ulCanRxOverRunCnt uint32_t n Number of CAN Frame Rx FIFO overrun event.
ulCanTxOverRunCnt uint32_t n Number of CAN Frame Tx FIFO overrun event.
ulCanTxAbortCnt uint32_t n Number of frames aborted from transmission.
ulCanErrWarningCnt uint32_t n Number, how often then CAN controller went to error warning state.
ulCanErrPassiveCnt uint32_t n Number, how often then CAN controller went to error passive state.
ulCanErrBusOffCnt uint32_t n Number, how often then CAN controller went to bus off state.

DNS_CONN_INFO_T tConnInfo
bAllocChoice uint8_t Bit field Information bit field about the allocated connection

D0: Explicit
D1: Poll
D2: Strobe
D3: Multicast poll (not supported)
D4: Change of State
D5: Cyclic
D6: Acknowledge suppress
D7: reserved

bMasterMacId uint8_t 0 … 63,
255

Mac id of the DeviceNet master that has allocated a connection with
the slave. 255 means the slave is not allocated by a master.

usReserved uint16_t 0 Reserved

DNS_CONN_INST_INFO_T atConnInfoInst[0 .. 2] (0 = POLL; 1 = STROBE ; 2 = COS/CYC)
usProduceSize uint16_t 0 … 255 Number of bytes produces (send) within this connection.
usProduceAsmInst uint16_t n Assembly object instance assigned for producing to this connect.
usConsumeSize uint16_t 0 … 255 Number of bytes consumed (received) within this connection.
usConsumeAsmInst uint16_t n Assembly object instance assigned for producing to this connect.

Table 83: Diagnostic Type1 – Common stack information

Application interface 103/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Diagnostic Type2 – Command counters
typedef struct DNS_DIAG_COMMAND_Ttag
{
 uint32_t ulCipReq;
 uint32_t ulCipCnfPos;
 uint32_t ulCipCnfNeg;
 uint32_t ulCipInd;
 uint32_t ulCipResPos;
 uint32_t ulCipResNeg;
 uint32_t ulCreateAsmReq;
 uint32_t ulCreateAsmCnfPos;
 uint32_t ulCreateAsmCnfNeg;
 uint32_t ulRegClassReq;
 uint32_t ulRegClassCnfPos;
 uint32_t ulRegClassCnfNeg;
 uint32_t ulResetInd;
 uint32_t ulResetResPos;
 uint32_t ulResetResNeg;

}DNS_DIAG_COMMAND_T;

Variable Type Value Description
ulCipReq uint32_t 0 … n Number of CIP Request sent from host to stack
ulCipCnfPos uint32_t 0 … n Positive CIP confirmation from stack to host
ulCipCnfNeg uint32_t 0 … n Negative CIP confirmation from stack to host
ulCipInd uint32_t 0 … n Number of CIP indications sent from stack to host
ulCipResPos uint32_t 0 … n Positive CIP response from host to stack
ulCipResNeg uint32_t 0 … n Negative CIP response from host to stack
ulCreateAsmReq uint32_t 0 … n Number of ‘Create Assembly’ requests sent from host to stack
ulCreateAsmCnfPos uint32_t 0 … n Positive ‘Create Assembly’ confirmation from stack to host
ulCreateAsmCnfNeg uint32_t 0 … n Negative ‘Create Assembly’ confirmation from stack to host
ulRegClassReq uint32_t 0 … n Number of ‘Register Class’ requests sent from host to stack
ulRegClassCnfPos uint32_t 0 … n Positive ‘Register Class’ confirmation from stack to host
ulRegClassCnfNeg uint32_t 0 … n Negative ‘Register Class’ confirmation from stack to host
ulResetInd uint32_t 0 … n Number of ‘Reset’ indications sent from stack to host
ulResetResPos uint32_t 0 … n Positive ‘Reset’ response from host to stack
ulResetResNeg uint32_t 0 … n Negative ‘Reset’ response from host to stack

Table 84: Diagnostic Type2 – Command counters

Application interface 104/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Diagnostic Type3 – CAN counters
typedef struct DNS_DIAG_CAN_Ttag
{
 uint32_t ulStatus;
 uint32_t ulTxFrameSucceed;
 uint32_t ulTxErrorSummary;
 uint32_t ulRxFrameSucceed;
 uint32_t ulRxErrorSummary;
 uint32_t ulTxErrCnt;
 uint32_t ulRxErrCnt;
 uint32_t ulArbitrationLost;
 uint32_t ulIndDroppedDueFifoFull;
 uint32_t ulConDroppedDueFifoFull;
 uint32_t ulRxStdFramesFilterd;
 uint32_t ulRxExtFramesFilterd;
 uint32_t ulRxStdFramesPassed;
 uint32_t ulRxExtFramesPassed;

}DNS_DIAG_CAN_T;

Variable Type Value Description
ulStatus uint32_t 0 … 3 CAN controller status:

0 – Active state
1 – Error warning state
2 – Error passive state
3 – Bus Off state

ulTxFrameSucceed uint32_t 0 … n Successful CAN frames sent to the network
ulTxErrorSummary uint32_t 0 … n Summary of transmission error
ulRxFrameSucceed uint32_t 0 … n Successful CAN frames received from the network
ulRxErrorSummary uint32_t 0 … n Summary of receive error

ulTxErrCnt uint32_t 0 … n Transmission error counter (TEC)

ulRxErrCnt uint32_t 0 … n Receive error counter (REC)
ulArbitrationLost uint32_t 0 … n Number of arbitration lost while trying to send CAN frames.
ulIndDroppedDueFifoFull uint32_t 0 … n CAN controller has dropped a can frame due its Rx FIFO overrun.

This may can happen, when the software cannot process the frames
fast enough.

ulConDroppedDueFifoFull uint32_t 0 … n Number of
ulRxStdFramesFilterd uint32_t 0 … n Number of 11 bit CAN frames received, but filtered by CAN controller
ulRxExtFramesFilterd uint32_t 0 … n Number of 29 bit CAN frames received, but filtered by CAN controller
ulRxStdFramesPassed uint32_t 0 … n Number of 11 bit CAN frames received
ulRxExtFramesPassed uint32_t 0 … n Number of 29 bit CAN frames received

Table 85: Diagnostic Type3 – CAN counters

Application interface 105/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Diagnostic Type3 – Resource counters

Diagnostic type 3 contains some counters used by the stack for internal resource tracking. There is
not one-to-one relation between their values and the requests that the host sends.
typedef struct DNS_DIAG_RESOURCE_Ttag
{
 uint32_t ulIndServiceIndicated;
 uint32_t ulIndServiceResponded;
 uint32_t ulIndServiceRespondedAfterTimeout;
 uint32_t ulIndServiceReleased;
 uint32_t ulIndServiceTimeout;
 uint32_t ulReqServiceAlloc;
 uint32_t ulReqServiceConfirmed;
 uint32_t ulReqServiceReleased;

}DNS_DIAG_RESOURCE_T;

Variable Type Value Description
ulIndServiceIndicated uint32_t 0 … n Total number of CIP services indications sent to the host
ulIndServiceResponded uint32_t 0 … n Total number of CIP services responded from host in time.

(Responses sent from in time before the internal 3
seconds timeout for indications has expired)

ulIndServiceRespondedAfterTimeout uint32_t 0 … n Total number of CIP services responded from host after
internal timeout for indications. (The host has not
answered within the specified time of 3 seconds).

ulIndServiceReleased uint32_t 0 … n Number of released buffers to indication pool of the stack.
If the host has answered all indications correctly this
counter should be the same as value of
‘ulIndServiceIndicated’.

ulIndServiceTimeout uint32_t 0 … n Number of timeout events where the host did not respond
right in time to an ‘indication’. In this case, the stack
responds the service to the network with an appropriate
error code by itself.

ulReqServiceAlloc uint32_t 0 … n Number of allocations from ‚CIP services request pool ‘.

ulReqServiceConfirmed uint32_t 0 … n Number of CIP services that the stack has confirmed to
the host.

ulReqServiceReleased uint32_t 0 … n Number of releases to the ‚CIP services request pool ‘.
If no CIP request is pending, this value should be the
same as ‘ulReqServiceAlloc’ number.

Table 86: Diagnostic Type3 – Resource counters

Application interface 106/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.5 Hilscher common services
This chapter briefly describes the Hilscher common services and their adaptation to the DeviceNet
Slave stack. Since the Hilscher common services are generic packets, their format and commands
are described in reference [2] and [3].

4.5.1 Channel Init
The host application has to send a packet HIL_CHANNEL_INIT_REQ to trigger a channel
initialization at the protocol stack. Channel Initialization causes the stack to perform a reset and to
reinitialize with the given configuration.

Anyway, the actions performed during a channel initialization are partly specific to the DeviceNet
Slave stack. At least, the protocol stack will perform the following actions:

 Clear READY and RUN bits

 Set BUS_OFF and stop all communication

 Call the object-specific reset functions of all CIP objects

 Unregister all objects and services previously registered with
DNS_CMD_REGISTER_CLASS_REQ

 Apply configuration from database, if applicable

 Apply configuration from Set Configuration Packet, if applicable

 Reply with HIL_CHANNEL_INIT_REQ

4.5.2 Register / Unregister Application
The host application sends the packets HIL_REGISTER_APP_REQ and
HIL_UNREGISTER_APP_REQ, respectively, to register or unregister the host application with the
protocol stack. Unless an application has registered, the stack will not generate any indications
toward the host application.

4.5.3 Get / Set Watchdog Time
The host application can send the packet HIL_GET_WATCHDOG_TIME_REQ to retrieve the
currently configured interval of the watchdog timer, or it sends a HIL_SET_WATCHDOG_TIME_REQ
to set the interval of the watchdog timer, in units of milliseconds.

4.5.4 Delete Config
The host application can send the packet HIL_DELETE_CONFIG_REQ to delete the internally
stored configuration from RAM or FLASH. For the DeviceNet stack, this will remove all stored
remanent data. Database files on the file system are not deleted.

Application interface 107/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.5.5 Start / Stop Communication
The host application sends the packet HIL_START_STOP_COMM_REQ to instruct the DeviceNet
Slave stack to start or stop network communication, i.e. to set or clear the BUS_ON signal of the
netX, according to the contained parameter.

4.5.6 Lock / Unlock Configuration
The host application sends the packet HIL_LOCK_UNLOCK_CONFIG_REQ to lock or unlock
configuration data, respectively. A locked configuration cannot be altered.

4.5.7 Get DPM I/O Information
The host application sends the packet HIL_GET_DPM_IO_INFO_REQ to obtain the offsets and
lengths of the areas used within the DPM I/O blocks.

4.5.8 Get / Set Trigger Type
The host application sends the packet HIL_GET_TRIGGER_TYPE_REQ to request the currently
configured trigger type. The trigger type defines the synchronization mode of IO data exchange
between host application and network data transfer.

The host application can sends the packet HIL_SET_TRIGGER_TYPE_REQ to the stack in order to
configure the data exchange trigger mode for the IO handshakes and Sync handshake. The trigger
mode is individual configurable per direction (send and receive). The predefined trigger types and
the packet to configuration is described in reference [2].

The DeviceNet slave stack support the following trigger type combinations:

Receive Direction Send Direction Note
HIL_TRIGGER_TYPE_PDIN_NONE HIL_TRIGGER_TYPE_PDOUT_NONE *)

HIL_TRIGGER_TYPE_PDIN_RX_DATA_RECEIVED HIL_TRIGGER_TYPE_PDOUT_NONE **)

Table 87: Trigger Type combinations

*) This combination is the default mode and is set per default by the stack at startup. This
combination is the so called ‘Free Run’ mode which is explained in chapter IO Exchange – Free
Run (page 49).

**) This combination is explained in chapter IO Exchange – RX Data Received (page 51).

4.5.9 Firmware Identification
The host application sends the packet HIL_FIRMWARE_IDENTIFY_REQ to retrieve version
information of the Protocol Stack Firmware running on the netX, i.e. its name, version and date.

Application interface 108/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

4.5.10 Set Remanent Data
In case, the application is responsible to store remanent data (section Remanent data on page 61);
it has to use this service during startup to provide the remanent data to the firmware.

For a description of this service and the indication and response packet, see reference [3]. For a
State diagram, see section Host application on page 59.

Value for ulComponentID
#define HIL_COMPONENT_ID_DEVNET_GCI_SLAVE ((uint32_t)0x011B0000L)

4.5.11 Store Remanent Data Indication
In case, the application is responsible to store remanent data (section Remanent data on page 61);
the application must handle this service. For a description of this service and the indication and
response packet, see reference [3].

Value for ulComponentID
#define HIL_COMPONENT_ID_DEVNET_GCI_SLAVE ((uint32_t)0x011B0000L)

Status information 109/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

5 Status information
The DeviceNet Slave provides status information in the dual-port memory. The status information
has a common block (protocol-independent) and a DeviceNet Slave specific block (extended
status).

5.1 Common status
For a description of the common status block, see reference [1].

5.1.1 DPM Communication status
The common status block includes the communication status. This section describes how the
DeviceNet Slave stack is adapted to the communication status.

Status Description
OFFLINE The device is not configured. No frames are generated.
STOP The device is configured and Bus OFF is set. The device is not responsive to network

communication. In addition, the Network Power (NP) is missing or might be lost, or a CAN Bus OFF
event has appeared.

IDLE The device is configured, Bus ON is set, the Network Power (NP) is available and the Duplicate
MAC ID Check has passed. The device is responsive to the network. An explicit connection might
exist. An IO connection (poll, strobe cos/cyclic) does not exist.

OPERATE The device is configured, Bus ON is set and has active IO-Communication. The device has at least
one open IO connection poll, strobe and/or cos/cyclic.

Table 88: Communication Status

The figure below shows the communication status transitions depending on specific events.

Figure 20: Communication status

Status information 110/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

5.1.2 DPM Status bits
The following table describes the flags of the DPM Status Bits:

Flag Description

Ready flag The Ready flag is a basic flag that is set by the communication channel at startup. As soon the
Ready flag is set the packet communication with communication channel is possible.

Run flag The Run flag will be set as soon as the DeviceNet Slave stack has received a valid
configuration.

Communication flag The Communication flag is set for the DPM channel if at least one of the IO connection
“poll”, “change of state”, “cyclic” or “bit strobe” is open. It is not set when the explicit
connection is open.

Table 89: Flags of the DPM Status Bits

5.2 Extended status
Currently no status data in the Extended Status Area are supported.

Status information 111/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

5.3 Process data status
Assembly objects represents process data in CIP respective DeviceNet. The data of assembly
objects are exchanged with the host application via DPM input and output area.

For output assemblies normally the pure assembly data is located into the DPM input image.
Optionally it is possible (by configuration) to map a 4 byte “Run/Idle status” and/or a 4 byte
“Sequence Counter” information in front of the assembly data. To enable the Run Idle and
“Sequence Counter” mapping refer to Table 65 on page 76.

Figure 21: Run/Idle - Sequence – Assembly Data Layout

5.3.1 Run / Idle status
The Run / Idle header is not applicable for producing assembly data, this means for data transfer
from host application to the stack.

Value Define Description
0x00000000 DNS_AS_DATA_STATUS_ZERO The assembly data are cleared and not valid.

This appears typically at startup until no
connection is established or when the connection
has timed out.

0x00000001 DNS_AS_DATA_STATUS_RECEIVE_RUN The assembly data are valid and can be used by
the application.

0x00000002 DNS_AS_DATA_STATUS_RECEIVE_IDLE The master has initiated the “receive idle” mode.
This means the master does not send valid data
across the connection, but the connection is still
established. The slave stack will keep the last
received data from the master in assembly data.
It is up to the user application to implement an
application specific behavior in receive idle state.

0x00000003 DNS_AS_DATA_STATUS_RECEIVE_IDLE_ZERO The same as the state before, but the stack has
cleared the assembly data.
(not supported)

0x00000004 DNS_AS_DATA_STATUS_HOLD_LAST_STATE The assembly data are in hold last state.
(not supported)

Table 90: Assembly data status

Status information 112/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

5.3.2 Sequence counter
The sequence counter is a counter that is incremented on each message consumption (I/O data
reception) from the network. The sequence counter is a counter generated by the stack. It is not
part of the data transmitted via network.

 In Run Idle status DNS_AS_DATA_STATUS_ZERO, the is counter always zero.

 In Run Idle status DNS_AS_DATA_STATUS_RECEIVE_RUN, the counter increments on each
poll data consumption.

 In Run Idle status DNS_AS_DATA_STATUS_RECEIVE_IDLE, the counter increments on
each poll idle consumption.

 On overflow of the counter wraps from 0xFFFFFFFF to 0x00000001.

 In case of disconnecting / closing the connection the counter is reset to zero.

 The counter is NOT a change of data counter.

Feature configuration via tag list 113/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

6 Feature configuration via tag list
Modification of the firmware’s tag list allows controlling of certain behavior, features and resource
limits. To modify the tag list, the Hilscher Tag List Editor tool has to be used.

The DeviceNet Slave V5 currently supports at least the following tags:

Tag list parameter

Tag list Parameter / Tag Value Description
Remanent Data
responsibility

HIL_TAG_REMANENT_DATA_RESP
ONSIBLE

Disabled Communication firmware stores
remanent data (default).

Enabled Application stores remanent data.
For a description, see section
Remanent data on page 61.

Initial DDP mode
after power on

HIL_TAG_DDP_MODE_AFTER_STA
RTUP

Active The Device Data Provider is active
from the very beginning, providing
data from the Flash Device Label
(FDL) or SecMem data sources.
(default)

Passive The Device Data Provider is passive
until set to “active” by the
application, after having set base
device information, e.g. serial
number.

Table 91: Tag list parameter

Status and error codes 114/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

7 Status and error codes
7.1 Common status codes
Hexadecimal value Definition and description
0x00000000 SUCCESS_HIL_OK

Operation succeeded.
0xC0000001 ERR_HIL_FAIL

Common error, detailed error information optionally present in the data area of packet.
0xC0000002 ERR_HIL_UNEXPECTED

Unexpected failure.
0xC0000003 ERR_HIL_OUTOFMEMORY

Ran out of memory.
0xC0000004 ERR_HIL_UNKNOWN_COMMAND

Unknown Command in Packet received.
0xC0000005 ERR_HIL_UNKNOWN_DESTINATION

Unknown Destination in Packet received.
0xC0000006 ERR_HIL_UNKNOWN_DESTINATION_ID

Unknown Destination Id in Packet received.
0xC0000007 ERR_HIL_INVALID_PACKET_LEN

Packet length is invalid.
0xC0000008 ERR_HIL_INVALID_EXTENSION

Invalid Extension in Packet received.
0xC0000009 ERR_HIL_INVALID_PARAMETER

Invalid Parameter in Packet found.
0xC000000A ERR_HIL_INVALID_ALIGNMENT

Invalid alignment.
0xC000000C ERR_HIL_WATCHDOG_TIMEOUT

Watchdog error occurred.
0xC000000D ERR_HIL_INVALID_LIST_TYPE

List type is invalid.
0xC000000E ERR_HIL_UNKNOWN_HANDLE

Handle is unknown.
0xC000000F ERR_HIL_PACKET_OUT_OF_SEQ

A packet index has been not in the expected sequence.
0xC0000010 ERR_HIL_PACKET_OUT_OF_MEMORY

The amount of fragmented data contained the packet sequence has been too large.
0xC0000011 ERR_HIL_QUE_PACKETDONE

The packet done function has failed.
0xC0000012 ERR_HIL_QUE_SENDPACKET

The sending of a packet has failed.
0xC0000013 ERR_HIL_POOL_PACKET_GET

The request of a packet from packet pool has failed.
0xC0000014 ERR_HIL_POOL_PACKET_RELEASE

The release of a packet-to-packet pool has failed.
0xC0000015 ERR_HIL_POOL_GET_LOAD

The get packet pool load function has failed.

Status and error codes 115/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Hexadecimal value Definition and description
0xC0000016 ERR_HIL_QUE_GET_LOAD

The get queue load function has failed.
0xC0000017 ERR_HIL_QUE_WAITFORPACKET

The waiting for a packet from queue has failed.
0xC0000018 ERR_HIL_QUE_POSTPACKET

The posting of a packet has failed.
0xC0000019 ERR_HIL_QUE_PEEKPACKET

Peeking a packet from queue has failed.
0xC000001A ERR_HIL_REQUEST_RUNNING

Request is already running.
0xC000001B ERR_HIL_CREATE_TIMER

Creating a timer failed.
0xC000001C ERR_HIL_BUFFER_TOO_SHORT

Supplied buffer too short for the data.
0xC000001D ERR_HIL_NAME_ALREADY_EXIST

Supplied name already exists.
0xC000001E ERR_HIL_PACKET_FRAGMENTATION_TIMEOUT

The packet fragmentation has timed out.
0xC0000100 ERR_HIL_INIT_FAULT

General initialization fault.
0xC0000101 ERR_HIL_DATABASE_ACCESS_FAILED

Database access failure.
0xC0000102 ERR_HIL_CIR_MASTER_PARAMETER_FAILED

Master parameter cannot activated at state operate.
0xC0000103 ERR_HIL_CIR_SLAVE_PARAMTER_FAILED

Slave parameter cannot activated at state operate.
0xC0000119 ERR_HIL_NOT_CONFIGURED

Configuration not available
0xC0000120 ERR_HIL_CONFIGURATION_FAULT

General configuration fault.
0xC0000121 ERR_HIL_INCONSISTENT_DATA_SET

Inconsistent configuration data.
0xC0000122 ERR_HIL_DATA_SET_MISMATCH

Configuration data set mismatch.
0xC0000123 ERR_HIL_INSUFFICIENT_LICENSE

Insufficient license.
0xC0000124 ERR_HIL_PARAMETER_ERROR

Parameter error.
0xC0000125 ERR_HIL_INVALID_NETWORK_ADDRESS

Network address invalid.
0xC0000126 ERR_HIL_NO_SECURITY_MEMORY

Security memory chip missing or broken.
0xC0000127 ERR_HIL_NO_MAC_ADDRESS_AVAILABLE

No MAC address available.
0xC0000128 ERR_HIL_INVALID_DDP_CONTENT

DeviceDataProvider contains invalid data.
0xC0000129 ERR_HIL_FIRMWARE_STARTUP_ERROR

Firmware startup failed. Check System logbook for details.

Status and error codes 116/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Hexadecimal value Definition and description
0xC000012A ERR_HIL_COMM_CHANNEL_STARTUP_ERROR

Communication Channel startup failed. Check Communication Channel logbook for details.
0xC000012B ERR_HIL_FIRMWARE_SPECIFIC_STARTUP_FAILED

An error occurred while starting firmware or protocol specific functionality.
0xC000012C ERR_HIL_INVALID_TAGLIST_CONTENT

While evaluating the firmware taglist an invalid taglist parameter was detected.
0xC000012D ERR_HIL_OPERATION_NOT_POSSIBLE_IN_CURRENT_STATE

The requested operation cannot be executed in current state.
0xC000012E ERR_HIL_REMANENT_DATA_MISSING

The requested operation cannot be executed because remanent data was not set correctly.
0xC000012F ERR_HIL_INVALID_DDP_OEM_SERIALNUMBER_CODING

The content of DDPs OEM field SerialNumber cannot be converted for usage with current
protocol stack.

0xC0000130 ERR_HIL_INVALID_DDP_OEM_ORDERNUMBER_CODING
The content of DDPs OEM field OrderNumber cannot be converted for usage with current
protocol stack.

0xC0000131 ERR_HIL_INVALID_DDP_OEM_HARDWAREREVISION_CODING
The content of DDPs OEM field HardwareRevision cannot be converted for usage with current
protocol stack.

0xC0000132 ERR_HIL_INVALID_DDP_OEM_PRODUCTIONDATE_CODING
The content of DDPs OEM field ProductionDate cannot be converted for usage with current
protocol stack.

0xC0000140 ERR_HIL_NETWORK_FAULT
General communication fault.

0xC0000141 ERR_HIL_CONNECTION_CLOSED
Connection closed.

0xC0000142 ERR_HIL_CONNECTION_TIMEOUT
Connection timeout.

0xC0000143 ERR_HIL_LONELY_NETWORK
Lonely network.

0xC0000144 ERR_HIL_DUPLICATE_NODE
Duplicate network address.

0xC0000145 ERR_HIL_CABLE_DISCONNECT
Cable disconnected.

0xC0000180 ERR_HIL_BUS_OFF
Bus Off flag is set.

0xC0000181 ERR_HIL_CONFIG_LOCK
Changing configuration is not allowed.

0xC0000182 ERR_HIL_APPLICATION_NOT_READY
Application is not at ready state.

0xC0000183 ERR_HIL_RESET_IN_PROCESS
Application is performing a reset.

0xC0000200 ERR_HIL_WATCHDOG_TIME_INVALID
Watchdog time is out of range.

0xC0000201 ERR_HIL_APPLICATION_ALREADY_REGISTERED
Application is already registered.

0xC0000202 ERR_HIL_NO_APPLICATION_REGISTERED
No application registered.

Status and error codes 117/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Hexadecimal value Definition and description
0xC0000203 ERR_HIL_INVALID_COMPONENT_ID

Invalid component identifier.
0xC0000204 ERR_HIL_INVALID_DATA_LENGTH

Invalid data length.
0xC0000205 ERR_HIL_DATA_ALREADY_SET

The data was already set.
0xC0000206 ERR_HIL_NO_LOGBOOK_AVAILABLE

Logbook not available.
0xC0001000 ERR_HIL_INVALID_HANDLE

No description available - ERR_HIL_INVALID_HANDLE.
0xC0001001 ERR_HIL_UNKNOWN_DEVICE

No description available - ERR_HIL_UNKNOWN_DEVICE.
0xC0001002 ERR_HIL_RESOURCE_IN_USE

No description available - ERR_HIL_RESOURCE_IN_USE.
0xC0001003 ERR_HIL_NO_MORE_RESOURCES

No description available - ERR_HIL_NO_MORE_RESOURCES.
0xC0001004 ERR_HIL_DRV_OPEN_FAILED

No description available - ERR_HIL_DRV_OPEN_FAILED.
0xC0001005 ERR_HIL_DRV_INITIALIZATION_FAILED

No description available - ERR_HIL_DRV_INITIALIZATION_FAILED.
0xC0001006 ERR_HIL_DRV_NOT_INITIALIZED

No description available - ERR_HIL_DRV_NOT_INITIALIZED.
0xC0001007 ERR_HIL_DRV_ALREADY_INITIALIZED

No description available - ERR_HIL_DRV_ALREADY_INITIALIZED.
0xC0001008 ERR_HIL_CRC

No description available - ERR_HIL_CRC.
0xC0001010 ERR_HIL_DRV_INVALID_RESOURCE

No description available - ERR_HIL_DRV_INVALID_RESOURCE.
0xC0001011 ERR_HIL_DRV_INVALID_MEM_RESOURCE

No description available - ERR_HIL_DRV_INVALID_MEM_RESOURCE.
0xC0001012 ERR_HIL_DRV_INVALID_MEM_SIZE

No description available - ERR_HIL_DRV_INVALID_MEM_SIZE.
0xC0001013 ERR_HIL_DRV_INVALID_PHYS_MEM_BASE

No description available - ERR_HIL_DRV_INVALID_PHYS_MEM_BASE.
0xC0001014 ERR_HIL_DRV_INVALID_PHYS_MEM_SIZE

No description available - ERR_HIL_DRV_INVALID_PHYS_MEM_SIZE.
0xC0001015 ERR_HIL_DRV_UNDEFINED_HANDLER

No description available - ERR_HIL_DRV_UNDEFINED_HANDLER.
0xC0001020 ERR_HIL_DRV_ILLEGAL_VECTOR_ID

No description available - ERR_HIL_DRV_ILLEGAL_VECTOR_ID.
0xC0001021 ERR_HIL_DRV_ILLEGAL_IRQ_MASK

No description available - ERR_HIL_DRV_ILLEGAL_IRQ_MASK.
0xC0001022 ERR_HIL_DRV_ILLEGAL_SUBIRQ_MASK

No description available - ERR_HIL_DRV_ILLEGAL_SUBIRQ_MASK.
0xC0001023 ERR_HIL_DRV_STATE_INVALID

Driver is in invalid state.
0xC0001100 ERR_HIL_DPM_CHANNEL_UNKNOWN

No description available - ERR_HIL_DPM_CHANNEL_UNKNOWN.

Status and error codes 118/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Hexadecimal value Definition and description
0xC0001101 ERR_HIL_DPM_CHANNEL_INVALID

No description available - ERR_HIL_DPM_CHANNEL_INVALID.
0xC0001102 ERR_HIL_DPM_CHANNEL_NOT_INITIALIZED

No description available - ERR_HIL_DPM_CHANNEL_NOT_INITIALIZED.
0xC0001103 ERR_HIL_DPM_CHANNEL_ALREADY_INITIALIZED

No description available - ERR_HIL_DPM_CHANNEL_ALREADY_INITIALIZED.
0xC0001120 ERR_HIL_DPM_CHANNEL_LAYOUT_UNKNOWN

No description available - ERR_HIL_DPM_CHANNEL_LAYOUT_UNKNOWN.
0xC0001121 ERR_HIL_DPM_CHANNEL_SIZE_INVALID

No description available - ERR_HIL_DPM_CHANNEL_SIZE_INVALID.
0xC0001122 ERR_HIL_DPM_CHANNEL_SIZE_EXCEEDED

No description available - ERR_HIL_DPM_CHANNEL_SIZE_EXCEEDED.
0xC0001123 ERR_HIL_DPM_CHANNEL_TOO_MANY_BLOCKS

No description available - ERR_HIL_DPM_CHANNEL_TOO_MANY_BLOCKS.
0xC0001130 ERR_HIL_DPM_BLOCK_UNKNOWN

No description available - ERR_HIL_DPM_BLOCK_UNKNOWN.
0xC0001131 ERR_HIL_DPM_BLOCK_SIZE_EXCEEDED

No description available - ERR_HIL_DPM_BLOCK_SIZE_EXCEEDED.
0xC0001132 ERR_HIL_DPM_BLOCK_CREATION_FAILED

No description available - ERR_HIL_DPM_BLOCK_CREATION_FAILED.
0xC0001133 ERR_HIL_DPM_BLOCK_OFFSET_INVALID

No description available - ERR_HIL_DPM_BLOCK_OFFSET_INVALID.
0xC0001140 ERR_HIL_DPM_CHANNEL_HOST_MBX_FULL

No description available - ERR_HIL_DPM_CHANNEL_HOST_MBX_FULL.
0xC0001141 ERR_HIL_DPM_CHANNEL_SEGMENT_LIMIT

No description available - ERR_HIL_DPM_CHANNEL_SEGMENT_LIMIT.
0xC0001142 ERR_HIL_DPM_CHANNEL_SEGMENT_UNUSED

No description available - ERR_HIL_DPM_CHANNEL_SEGMENT_UNUSED.
0xC0001143 ERR_HIL_NAME_INVALID

No description available - ERR_HIL_NAME_INVALID.
0xC0001144 ERR_HIL_UNEXPECTED_BLOCK_SIZE

No description available - ERR_HIL_UNEXPECTED_BLOCK_SIZE.
0xC0001145 ERR_HIL_COMPONENT_BUSY

The component is busy and cannot handle the requested service.
0xC0001150 ERR_HIL_INVALID_HEADER

Invalid (file) header. E.g. wrong CRC/MD5/Cookie.
0xC0001151 ERR_HIL_INCOMPATIBLE

Firmware does not match device.
0xC0001152 ERR_HIL_NOT_AVAILABLE

Update file or destination (XIP-Area) not found.
0xC0001153 ERR_HIL_READ

Failed to read from file/area.
0xC0001154 ERR_HIL_WRITE

Failed to write from file/area.
0xC0001155 ERR_HIL_IDENTICAL

Update firmware and installed firmware are identical.
0xC0001156 ERR_HIL_INSTALLATION

Error during installation of firmware.

Status and error codes 119/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Hexadecimal value Definition and description
0xC0001157 ERR_HIL_VERIFICATION

Error during verification of firmware.
0xC0001158 ERR_HIL_INVALIDATION

Error during invalidation of firmware files.
0xC0001160 ERR_HIL_FORMAT

Volume is not formatted.
0xC0001161 ERR_HIL_VOLUME

(De-)Initialization of volume failed.
0xC0001162 ERR_HIL_VOLUME_DRV

(De-)Initialization of volume driver failed.
0xC0001163 ERR_HIL_VOLUME_INVALID

The volume is invalid.
0xC0001164 ERR_HIL_VOLUME_EXCEEDED

Number of supported volumes exceeded.
0xC0001165 ERR_HIL_VOLUME_MOUNT

The volume is mounted (in use).
0xC0001166 ERR_HIL_ERASE

Failed to erase file/directory/flash.
0xC0001167 ERR_HIL_OPEN

Failed to open file/directory.
0xC0001168 ERR_HIL_CLOSE

Failed to close file/directory.
0xC0001169 ERR_HIL_CREATE

Failed to create file/directory.
0xC0001170 ERR_HIL_MODIFY

Failed to modify file/directory.
0xC0001171 ERR_HIL_FS_NOT_AVAILABLE

File system not available.
0xC0001172 ERR_HIL_FILE_NOT_FOUND

File not available.
0xC0001173 ERR_HIL_DIAG_NO_INFO

No diagnostic information available.
0xC0001174 ERR_HIL_QUEUE_UNKNOWN

Queue is not available.
0xC0001175 ERR_HIL_NAME_UNKNOWN

Name is unknown / not available.
0xC0001176 ERR_HIL_UPDATE_ERROR

Failed to update firmware.
0xC0001177 ERR_HIL_DDP_STATE_INVALID

DDP is in wrong state.
0xC0001178 ERR_HIL_MANUFACTURER_INVALID

Manufacturer in file header does not match target.
0xC0001179 ERR_HIL_DEVICE_CLASS_INVALID

Device class in file header does not match target.
0xC000117A ERR_HIL_HW_COMPATIBILITY_INVALID

Hardware compatibility index in file header does not match target.
0xC000117B ERR_HIL_HW_OPTIONS_INVALID

Hardware options in file header does not match target.

Status and error codes 120/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Hexadecimal value Definition and description
0x0000F005 SUCCESS_HIL_FRAGMENTED

Fragment accepted.
0xC000F006 ERR_HIL_RESET_REQUIRED

Reset required.
0xC000F007 ERR_HIL_EVALUATION_TIME_EXPIRED

Evaluation time expired. Reset required.
0xC000DEAD ERR_HIL_FIRMWARE_CRASHED

The firmware has crashed and the exception handler is running.
Table 92: Common status codes

7.2 Generic AP
Hexadecimal value Definition and description
0xC1090001 ERR_GAP_INVALID_COMPONENT_ID

Invalid component identifier.
0xC1090002 ERR_GAP_SET_REMANENT_DATA_NOT_ALLOWED

Setting remanent data is not allowed.
0xC1090003 ERR_GAP_INVALID_WORKER

Invalid worker.
0xC1090004 ERR_GAP_LOGBOOK_CREATE_FAIL

The Logbook could not be created.
0xC1090005 ERR_GAP_POOL_CREATE_FAIL

The service pool could not be created.
0xC1090006 ERR_GAP_QUEUE_CREATE_FAIL

The GAP queue could not be created.
0xC1090007 ERR_GAP_MUTEX_INIT_FAIL

The initialization of a mutex failed.
0xC1090008 ERR_GAP_TIMER_INIT_FAIL

The initialization of a PS Timer failed.
0xC1090009 ERR_GAP_COMPMGR_REGISTER_FAIL

Generic AP could not register at Component Manager.
0xC109000A ERR_GAP_COMPMGR_DIAG_REGISTER_FAIL

Generic AP could not register the diagnostic callback at Component Manager.
0xC109000B ERR_GAP_WATCHDOG_INIT_FAIL

The DPM watchdog initialization failed.
0xC109000C ERR_GAP_SET_CHANNEL_QUEUE_FAIL

The DPM channel queue could not be registered.
0xC109000D ERR_GAP_GET_CHANNEL_QUEUE_FAIL

The DPM channel queue could not be retrieved.
0xC109000E ERR_GAP_REMANENT_FILE_CREATE_FAIL

The remanent data file could not be created.
0xC109000F ERR_GAP_COMPONENT_INIT_FAIL

The component initialization failed.
0xC1090010 ERR_GAP_COMPONENT_START_FAIL

The component could not be started.

Status and error codes 121/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Hexadecimal value Definition and description
0xC1090011 ERR_GAP_REMANENT_DATA_NOT_ENOUGH_MEMORY

Not enough memory for remanent data.
0xC1090012 ERR_GAP_FRAGMENT_FORWARD_INIT_FAIL

The fragment forwarding initialization failed.
0xC1090013 ERR_GAP_DPM_CHANNEL_START_FAIL

The DPM channel could not be started.
0xC1090014 ERR_GAP_RESOURCE_ALLOCATION_FAIL

Failed to allocate Generic AP resources.
0xC1090015 ERR_GAP_CONFIG_VERSION_INVALID

Invalid Generic AP configuration version.
0xC1090016 ERR_GAP_CONFIG_DPM_COMM_CHANNEL_INVALID

Invalid DPM communication channel.
0xC1090017 ERR_GAP_CONFIG_DPM_CHANNEL_FW_INFO_INVALID

Invalid firmware information for the related DPM communication channel.
0xC1090018 ERR_GAP_REMANENT_FILE_READ_FAIL

The remanent data file could not be read.
0xC1090019 ERR_GAP_REMANENT_FILE_WRITE_FAIL

The remanent data file could not be written.
0xC109001A ERR_GAP_REMANENT_DATA_DELETE_FAIL

The remanent data could not be deleted.
0x8109001B WARN_GAP_SET_REMANENT_DATA_DENIED

The component did not accept the remanent data.
0x8109001C WARN_GAP_SERVICE_DENIED

The component did not accept the service.
0xC109001D ERR_GAP_NO_RESPONSE_HANDLER

No response service handler could be found.
0x8109001E WARN_GAP_SERVICE_RETRY

The forwarding of a service to the component or application has failed and will be repeated.
0xC109001F ERR_GAP_QUEUE_INVALID_SERVICE_LEN

Queue service length is invalid.
0xC1090020 ERR_GAP_DPM_INVALID_SERVICE_LEN

DPM service length is invalid.
0x81090021 WARN_GAP_NO_REMANENT_DATA

Remanent data does not exist.
0xC1090022 ERR_GAP_QUEUE_JOB

Service job queued failed.
Table 93: Generic AP status codes

Status and error codes 122/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

7.3 DeviceNet Slave stack
Hexadecimal value Definition and description
0xC11A0000 ERR_DEVNET_OBJECT_UNKNOWN

DeviceNet Object unknown error.
0xC11A0001 ERR_DEVNET_OBJECT_USER_OBJECT_ALREADY_REGISTERED

DeviceNet Object already registered.
0xC11A0002 ERR_DEVNET_OBJECT_USER_OBJECT_REGISTER_LIMIT_REACHED

The maximum number of objects that can be registered is reached.
0xC11B0000 ERR_DEVNET_GCI_DNS_UNKNOWN

DeviceNet GCI Adapter Slave unknown error
0xC11B0001 ERR_DEVNET_GCI_DNS_NETWORK_POWER_LOSS

24V Network Power Missing.
0xC11B0002 ERR_DEVNET_GCI_DNS_DUPLICATE_MAC_DETECTED

Duplicate MAC ID found.
0xC11B0003 ERR_DEVNET_GCI_DNS_CAN_BUS_OFF

Network error CAN BUS OFF detected.
0xC11B0004 ERR_DEVNET_GCI_DNS_WRONG_OR_MISSING_CONFIGURATION

The configuration is missing or not correct.
0xC11B0005 ERR_DEVNET_GCI_DNS_CONFIGURED_BY_DATABASE

The device is already configured by a database file.
0xC1190000 ERR_DEVNET_CORE_UNKNOWN

DeviceNet core unknown error.
0xC1190001 ERR_DEVNET_CORE_INVALID_PRODUCED_SIZE

Invalid produce size.
0xC1190002 ERR_DEVNET_CORE_INVALID_CONSUMED_SIZE

Invalid consume size.
0xC1190003 ERR_DEVNET_CORE_NO_BUS_COMMUNICATION

No network communication.
Table 94: DeviceNet Slave status Codes

Appendix 123/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

8 Appendix
8.1 List of figures
Figure 1: Structure of the DeviceNet Slave stack .. 10
Figure 2: Objects Model of Hilscher DeviceNet Slave stack.. 18
Figure 3: Sequence Diagram – Attribute Update Notify .. 41
Figure 4: Sequence Diagram – Attribute Update Forward .. 42
Figure 5: Loadable firmware .. 46
Figure 6: Free Run – data buffers to couple network and application cycle .. 49
Figure 7: Free Run – data flow diagram .. 49
Figure 8: RX Data Received – data flow diagram .. 51
Figure 9: App synchronized poll.rsp – data flow diagram ... 53
Figure 10: Basic packet configuration sequence ... 56
Figure 11: Extended packet configuration sequence .. 57
Figure 12: Data base configuration sequence ... 58
Figure 13: Host application behavior ... 59
Figure 14: DNS_CMD_SET_CONFIGURATION_REQ/CNF - Basic configuration sequence diagram 67
Figure 15: DNS_CMD_SERVICE_REQ/CNF sequence diagram ... 78
Figure 16: DNS_CMD_REGISTER_CLASS_REQ/CNF - sequence diagram ... 81
Figure 17: DNS_CMD_SERVICE_IND/RES sequence diagram ... 88
Figure 18: DNS_CMD_RESET_IND/RES sequence diagram... 91
Figure 19: DNS_CMD_DIAG_REQ/CNF - Sequence diagram ... 96
Figure 20: Communication status .. 109
Figure 21: Run/Idle - Sequence – Assembly Data Layout ... 111

8.2 List of tables
Table 1: List of revisions ... 5
Table 2: Technical Data DeviceNet Slave ... 7
Table 3: Firmware available for netX ... 7
Table 4: Terms, abbreviations and definitions ... 8
Table 5: References to documents ... 9
Table 6: Introduction of Class Attribute Description .. 13
Table 7: Introduction of Instance Attribute Description .. 14
Table 8: Introduction of Service Description .. 14
Table 9: Service Codes ... 15
Table 10: Class ID ranges according CIP specification ... 16
Table 11: Predefined values for the Class ID according to the CIP specification .. 16
Table 12: Generic Status Codes ... 16
Table 13: Identity Object - Class attributes ... 19
Table 14: Identity Object - Instance attributes ... 19
Table 15: Identity Object - Common services .. 20
Table 16: Message Router - Class attributes .. 21
Table 17: Message Router - Instance attributes .. 21
Table 18: Message Router - Common services .. 22
Table 19: DeviceNet Object - Class attributes ... 23
Table 20: DeviceNet Object - Instance attributes .. 23
Table 21: DeviceNet Object - Common services ... 24
Table 22: DeviceNet Object - Specific services ... 24
Table 23: Assembly Object - Class attributes .. 25
Table 24: Assembly Object - Instance attributes ... 25
Table 25: Assembly Object - Common services .. 26
Table 26: Connection Object - Class attributes ... 26
Table 27: Connection Object - Instance attributes .. 27
Table 28: Connection Object - Common services ... 28
Table 29: Predefined Connection Object - Instance attributes default values ... 28
Table 30: Acknowledge Handler Object - Class attributes .. 29
Table 31: Acknowledge Handler Object - Instance attributes .. 29
Table 32: Acknowledge Handler Object - Common services .. 30
Table 33: IO Mapping Object - Class attributes ... 31
Table 34: IO Mapping Object - Instance attributes .. 31
Table 35: IO Mapping Object - Common services ... 32
Table 36: IO Mapping Object – ‘Status’ attribute values ... 32
Table 37: Module Network Status Object - Class attributes .. 33

Appendix 124/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Table 38: Module Network Status Object - Instance attributes .. 33
Table 39: Module Network Status Object - Common services .. 34
Table 40: Module Network Status Object – ‘Module Status’ attribute values .. 34
Table 41: Module Network Status Object – ‘Network Status’ attribute values ... 35
Table 42: Attribute option flags .. 36
Table 43: Class Instance Attribute option flags and pre-set values ... 38
Table 44: Class Attribute option flags and pre-set values ... 39
Table 45: Hilscher Service – Get Attribute Option – Response data parameters .. 40
Table 46: Hilscher Service – Set Attribute Option – Request data parameters ... 40
Table 47: Hilscher Service ’Modify Status’ – Request data parameters .. 43
Table 48: List of Identity Status Attribute Fault Bits ... 44
Table 49: Hilscher Service – Modify Status– stack operation .. 45
Table 50: Process data direction convention ... 47
Table 51: Input and output data .. 48
Table 52: FreeRun – data flow diagram timings .. 50
Table 53: RX Data Received – data flow diagram timings .. 51
Table 54: App synchronized poll.rsp – data flow diagram timings ... 54
Table 55: Protocol stack or host application stores remanent data ... 61
Table 56: Basic Device Data in the Flash Device Label .. 64
Table 57: OEM identification in the Flash Device Label .. 64
Table 58: Service overview ... 66
Table 59: Basic configuration steps .. 68
Table 60: DNS_CMD_SET_CONFIGURATION_REQ – Set Configuration request ... 70
Table 61: Set Configuration parameter ‘ulSystemFlags .. 72
Table 62: Set Configuration parameter ulConfigFlags .. 73
Table 63: DNS_CMD_SET_CONFIGURATION_CNF – Set Configuration confirmation .. 74
Table 64: DNS_CMD_CREATE_ASSEMBLY_REQ – Create Assembly request ... 75
Table 65: Assembly configuration flags ... 76
Table 66: DNS_CMD_CREATE_ASSEMBLY_CNF – Register Class confirmation .. 76
Table 67: DNS_CMD_CIP_SERVICE_REQ – CIP Service request ... 79
Table 68: DNS_CMD_CIP_SERVICE_CNF – CIP Service confirmation .. 80
Table 69: DNS_CMD_REGISTER_CLASS_REQ – Register Class request ... 82
Table 70: DNS_CMD_REGISTER_CLASS_REQ – Register Class limitations ... 83
Table 71: Service Codes depending to the bit position ... 84
Table 72: DNS_CMD_REGISTER_CLASS_CNF – Register Class confirmation .. 85
Table 73: DNS_CMD_UNREGISTER_CLASS_REQ – Unregister Class request .. 86
Table 74: DNS_CMD_UNREGISTER_CLASS_CNF – Unregister Class confirmation ... 87
Table 75: DNS_CMD_SERVICE_IND – CIP Service indication .. 89
Table 76: DNS_CMD_SERVICE_RES – CIP Service response ... 90
Table 77: DNS_CMD_RESET_IND – Reset indication ... 92
Table 78: DNS_RESET_IND – reset reason ... 93
Table 79: DNS_RESET_IND – Reset types depending on Reset Reason ... 94
Table 80: DNS_CMD_RESET_RES – Reset response .. 95
Table 81: DNS_CMD_DIAG_REQ – Diagnostic request .. 97
Table 82: DNS_DIAG_CNF – Diag confirmation ... 98
Table 83: Diagnostic Type1 – Common stack information .. 102
Table 84: Diagnostic Type2 – Command counters ... 103
Table 85: Diagnostic Type3 – CAN counters .. 104
Table 86: Diagnostic Type3 – Resource counters ... 105
Table 87: Trigger Type combinations .. 107
Table 88: Communication Status .. 109
Table 89: Flags of the DPM Status Bits .. 110
Table 90: Assembly data status .. 111
Table 91: Tag list parameter ... 113
Table 92: Common status codes ... 120
Table 93: Generic AP status codes ... 121
Table 94: DeviceNet Slave status Codes .. 122

Appendix 125/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

8.3 Legal Notes

Copyright

© Hilscher Gesellschaft für Systemautomation mbH

All rights reserved.

The images, photographs and texts in the accompanying materials (in the form of a user's manual,
operator's manual, Statement of Work document and all other document types, support texts,
documentation, etc.) are protected by German and international copyright and by international
trade and protective provisions. Without the prior written consent, you do not have permission to
duplicate them either in full or in part using technical or mechanical methods (print, photocopy or
any other method), to edit them using electronic systems or to transfer them. You are not permitted
to make changes to copyright notices, markings, trademarks or ownership declarations.
Illustrations are provided without taking the patent situation into account. Any company names and
product designations provided in this document may be brands or trademarks by the
corresponding owner and may be protected under trademark, brand or patent law. Any form of
further use shall require the express consent from the relevant owner of the rights.

Important notes

Utmost care was/is given in the preparation of the documentation at hand consisting of a user's
manual, operating manual and any other document type and accompanying texts. However, errors
cannot be ruled out. Therefore, we cannot assume any guarantee or legal responsibility for
erroneous information or liability of any kind. You are hereby made aware that descriptions found
in the user's manual, the accompanying texts and the documentation neither represent a
guarantee nor any indication on proper use as stipulated in the agreement or a promised attribute.
It cannot be ruled out that the user's manual, the accompanying texts and the documentation do
not completely match the described attributes, standards or any other data for the delivered
product. A warranty or guarantee with respect to the correctness or accuracy of the information is
not assumed.

We reserve the right to modify our products and the specifications for such as well as the
corresponding documentation in the form of a user's manual, operating manual and/or any other
document types and accompanying texts at any time and without notice without being required to
notify of said modification. Changes shall be taken into account in future manuals and do not
represent an obligation of any kind, in particular there shall be no right to have delivered
documents revised. The manual delivered with the product shall apply.

Under no circumstances shall Hilscher Gesellschaft für Systemautomation mbH be liable for direct,
indirect, ancillary or subsequent damage, or for any loss of income, which may arise after use of
the information contained herein.

Appendix 126/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Liability disclaimer

The hardware and/or software was created and tested by Hilscher Gesellschaft für
Systemautomation mbH with utmost care and is made available as is. No warranty can be
assumed for the performance or flawlessness of the hardware and/or software under all application
conditions and scenarios and the work results achieved by the user when using the hardware
and/or software. Liability for any damage that may have occurred as a result of using the hardware
and/or software or the corresponding documents shall be limited to an event involving willful intent
or a grossly negligent violation of a fundamental contractual obligation. However, the right to assert
damages due to a violation of a fundamental contractual obligation shall be limited to contract-
typical foreseeable damage.

It is hereby expressly agreed upon in particular that any use or utilization of the hardware and/or
software in connection with

 Flight control systems in aviation and aerospace;

 Nuclear fission processes in nuclear power plants;

 Medical devices used for life support and

 Vehicle control systems used in passenger transport

shall be excluded. Use of the hardware and/or software in any of the following areas is strictly
prohibited:

 For military purposes or in weaponry;

 For designing, engineering, maintaining or operating nuclear systems;

 In flight safety systems, aviation and flight telecommunications systems;

 In life-support systems;

 In systems in which any malfunction in the hardware and/or software may result in physical
injuries or fatalities.

You are hereby made aware that the hardware and/or software was not created for use in
hazardous environments, which require fail-safe control mechanisms. Use of the hardware and/or
software in this kind of environment shall be at your own risk; any liability for damage or loss due to
impermissible use shall be excluded.

Appendix 127/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Warranty

Hilscher Gesellschaft für Systemautomation mbH hereby guarantees that the software shall run
without errors in accordance with the requirements listed in the specifications and that there were
no defects on the date of acceptance. The warranty period shall be 12 months commencing as of
the date of acceptance or purchase (with express declaration or implied, by customer's conclusive
behavior, e.g. putting into operation permanently).

The warranty obligation for equipment (hardware) we produce is 36 months, calculated as of the
date of delivery ex works. The aforementioned provisions shall not apply if longer warranty periods
are mandatory by law pursuant to Section 438 (1.2) BGB, Section 479 (1) BGB and Section 634a
(1) BGB [Bürgerliches Gesetzbuch; German Civil Code] If, despite of all due care taken, the
delivered product should have a defect, which already existed at the time of the transfer of risk, it
shall be at our discretion to either repair the product or to deliver a replacement product, subject to
timely notification of defect.

The warranty obligation shall not apply if the notification of defect is not asserted promptly, if the
purchaser or third party has tampered with the products, if the defect is the result of natural wear,
was caused by unfavorable operating conditions or is due to violations against our operating
regulations or against rules of good electrical engineering practice, or if our request to return the
defective object is not promptly complied with.

Costs of support, maintenance, customization and product care

Please be advised that any subsequent improvement shall only be free of charge if a defect is
found. Any form of technical support, maintenance and customization is not a warranty service, but
instead shall be charged extra.

Additional guarantees

Although the hardware and software was developed and tested in-depth with greatest care,
Hilscher Gesellschaft für Systemautomation mbH shall not assume any guarantee for the suitability
thereof for any purpose that was not confirmed in writing. No guarantee can be granted whereby
the hardware and software satisfies your requirements, or the use of the hardware and/or software
is uninterruptable or the hardware and/or software is fault-free.

It cannot be guaranteed that patents and/or ownership privileges have not been infringed upon or
violated or that the products are free from third-party influence. No additional guarantees or
promises shall be made as to whether the product is market current, free from deficiency in title, or
can be integrated or is usable for specific purposes, unless such guarantees or promises are
required under existing law and cannot be restricted.

Appendix 128/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

Confidentiality

The customer hereby expressly acknowledges that this document contains trade secrets,
information protected by copyright and other patent and ownership privileges as well as any related
rights of Hilscher Gesellschaft für Systemautomation mbH. The customer agrees to treat as
confidential all of the information made available to customer by Hilscher Gesellschaft für
Systemautomation mbH and rights, which were disclosed by Hilscher Gesellschaft für
Systemautomation mbH and that were made accessible as well as the terms and conditions of this
agreement itself.

The parties hereby agree to one another that the information that each party receives from the
other party respectively is and shall remain the intellectual property of said other party, unless
provided for otherwise in a contractual agreement.

The customer must not allow any third party to become knowledgeable of this expertise and shall
only provide knowledge thereof to authorized users as appropriate and necessary. Companies
associated with the customer shall not be deemed third parties. The customer must obligate
authorized users to confidentiality. The customer should only use the confidential information in
connection with the performances specified in this agreement.

The customer must not use this confidential information to his own advantage or for his own
purposes or rather to the advantage or for the purpose of a third party, nor must it be used for
commercial purposes and this confidential information must only be used to the extent provided for
in this agreement or otherwise to the extent as expressly authorized by the disclosing party in
written form. The customer has the right, subject to the obligation to confidentiality, to disclose the
terms and conditions of this agreement directly to his legal and financial consultants as would be
required for the customer's normal business operation.

Export provisions

The delivered product (including technical data) is subject to the legal export and/or import laws as
well as any associated regulations of various countries, especially such laws applicable in
Germany and in the United States. The products / hardware / software must not be exported into
such countries for which export is prohibited under US American export control laws and its
supplementary provisions. You hereby agree to strictly follow the regulations and to yourself be
responsible for observing them. You are hereby made aware that you may be required to obtain
governmental approval to export, reexport or import the product.

Appendix 129/129

DeviceNet Slave | Protocol API
DOC210205API05EN | Revision 5 | English | 2024-04 | Released | Public © Hilscher, 2021-2024

8.4 Contacts

Headquarters

Germany
Hilscher Gesellschaft für Systemautomation mbH
Rheinstraße 15
D-65795 Hattersheim
Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-mail: info@hilscher.com
Support
Phone: +49 (0) 6190 9907-990
E-mail: hotline@hilscher.com

Japan
Hilscher Japan KK
Tokyo, 160-0022
Phone: +81 (0) 3-5362-0521
E-mail: info@hilscher.jp
Support
Phone: +81 (0) 3-5362-0521
E-mail: jp.support@hilscher.com

Republic of Korea
Hilscher Korea Inc.
13494, Seongnam, Gyeonggi
Phone: +82 (0) 31-739-8361
E-mail: info@hilscher.kr
Support
Phone: +82 (0) 31-739-8363
E-mail: kr.support@hilscher.com

Austria
Hilscher Austria GmbH
4020 Linz
Phone: +43 732 931 675-0
E-mail: sales.at@hilscher.com
Support
Phone: +43 732 931 675-0
E-mail: at.support@hilscher.com

Switzerland
Hilscher Swiss GmbH
4500 Solothurn
Phone: +41 (0) 32 623 6633
E-mail: info@hilscher.ch
Support
Phone: +41 (0) 32 623 6633
E-mail: support.swiss@hilscher.com

USA
Hilscher North America, Inc.
Lisle, IL 60532
Phone: +1 630-505-5301
E-mail: info@hilscher.us
Support
Phone: +1 630-505-5301
E-mail: us.support@hilscher.com

Subsidiaries

China
Hilscher Systemautomation (Shanghai) Co. Ltd.
200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-mail: info@hilscher.cn
Support
Phone: +86 (0) 21-6355-5161
E-mail: cn.support@hilscher.com

France
Hilscher France S.a.r.l.
69800 Saint Priest
Phone: +33 (0) 4 72 37 98 40
E-mail: info@hilscher.fr
Support
Phone: +33 (0) 4 72 37 98 40
E-mail: fr.support@hilscher.com

India
Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai, Bangalore
Phone: +91 8888 750 777
E-mail: info@hilscher.in
Support
Phone: +91 8108884011
E-mail: info@hilscher.in

Italy
Hilscher Italia S.r.l.
20090 Vimodrone (MI)
Phone: +39 02 25007068
E-mail: info@hilscher.it
Support
Phone: +39 02 25007068
E-mail: it.support@hilscher.com

mailto:info@hilscher.com
mailto:hotline@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.kr
mailto:kr.support@hilscher.com
mailto:sales.at@hilscher.com
mailto:at.support@hilscher.com
mailto:info@hilscher.ch
mailto:support.swiss@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com

	1 Introduction
	1.1 About this document
	1.2 List of revisions
	1.3 System requirements
	1.3.1 System requirements for firmware generation V5

	1.4 Intended audience
	1.5 Technical data
	1.6 Terms, abbreviations, definitions
	1.7 References to documents

	2 DeviceNet Slave features
	2.1 Structure of the stack
	2.2 CIP Introduction
	2.2.1 Object classes
	2.2.2 Class attributes
	2.2.3 Instance attributes
	2.2.4 Services
	2.2.5 CIP definitions
	2.2.5.1 CIP defined Service Codes
	2.2.5.2 CIP defined Class IDs
	2.2.5.3 CIP defined General Status Codes
	2.2.5.4 CIP defined Extended Status Codes

	2.3 Object classes
	2.3.1 Identity Object (Class Code: 0x01)
	2.3.1.1 Class attributes
	2.3.1.2 Instance attributes
	2.3.1.3 Common services

	2.3.2 Message Router Object (Class Code: 0x02)
	2.3.2.1 Class attributes
	2.3.2.2 Instance attributes
	2.3.2.3 Common services

	2.3.3 DeviceNet Object (Class Code: 0x03)
	2.3.3.1 Class attributes
	2.3.3.2 Instance attributes
	2.3.3.3 Common services
	2.3.3.4 Object-specific services

	2.3.4 Assembly Object (Class Code 0x04)
	2.3.4.1 Class attributes
	2.3.4.2 Instance attributes
	2.3.4.3 Common services

	2.3.5 Connection Object (Class Code: 0x05)
	2.3.5.1 Class attributes
	2.3.5.2 Instance attributes
	2.3.5.3 Common services
	2.3.5.4 Specific attributes

	2.3.6 Acknowledge Handler Object (Class Code 0x2B)
	2.3.6.1 Class attributes
	2.3.6.2 Instance attributes
	2.3.6.3 Common services

	2.3.7 IO Mapping Object (Class Code: 0x402)
	2.3.7.1 Class attributes
	2.3.7.2 Instance attributes
	2.3.7.3 Common services
	2.3.7.4 Instance attribute values

	2.3.8 Module and Network Status Object (Class Code: 0x404)
	2.3.8.1 Class attributes
	2.3.8.2 Instance attributes
	2.3.8.3 Common Services
	2.3.8.4 Instance attribute values

	2.4 Hilscher-specific CIP services
	2.4.1 Common
	2.4.1.1 Attribute Option Flags
	2.4.1.2 Get Attribute Option Flags
	2.4.1.3 Set Attribute Option Flags
	2.4.1.4 Attribute update Notify vs. Forward

	2.4.2 Identity Object
	2.4.2.1 Modify Identity Status Attribute

	3 Getting started
	3.1 Loadable Firmware (LFW)
	3.2 Process data direction convention
	3.3 Cyclic data exchange
	3.3.1 IO Exchange – Free Run
	3.3.2 IO Exchange – RX Data Received
	3.3.3 IO Exchange – Application synchronized POLL.Rsp

	3.4 Acyclic data exchange
	3.5 Configuration methods
	3.5.1 Basic packet configuration set
	3.5.2 Extended packet configuration set
	3.5.3 Data base configuration

	3.6 Host application behavior
	3.6.1 Startup
	3.6.2 Configuration
	3.6.3 Operational
	3.6.4 Reset

	3.7 Remanent data
	3.7.1 Remanent data responsibility
	3.7.2 Remanent data state
	3.7.3 Remanent data handling
	3.7.4 Remanent data values

	3.8 Device data
	3.8.1 Device Serial Number

	4 Application interface
	4.1 Service overview
	4.2 Configuration services
	4.2.1 Basic configuration sequence
	4.2.2 Set Configuration service
	4.2.2.1 Set Configuration request
	4.2.2.2 Set Configuration confirmation

	4.2.3 Create Assembly service
	4.2.3.1 Create Assembly request
	4.2.3.2 Create Assembly confirmation

	4.3 Explicit Messaging services
	4.3.1 General
	4.3.2 CIP Service sent from application
	4.3.2.1 CIP Service request
	4.3.2.2 CIP Service confirmation

	4.3.3 Register Class Service
	4.3.3.1 Register Class request
	4.3.3.2 Register Class confirmation

	4.3.4 Unregister Class service
	4.3.4.1 Unregister Class request
	4.3.4.2 Unregister Class confirmation

	4.3.5 CIP Service sent by a master
	4.3.5.1 CIP Service indication
	4.3.5.2 CIP Service response

	4.3.6 Reset service
	4.3.6.1 Reset indication
	4.3.6.2 Reset response

	4.4 Diagnostic service
	4.4.1 Diag service
	4.4.1.1 Diag request
	4.4.1.2 Diag confirmation

	4.5 Hilscher common services
	4.5.1 Channel Init
	4.5.2 Register / Unregister Application
	4.5.3 Get / Set Watchdog Time
	4.5.4 Delete Config
	4.5.5 Start / Stop Communication
	4.5.6 Lock / Unlock Configuration
	4.5.7 Get DPM I/O Information
	4.5.8 Get / Set Trigger Type
	4.5.9 Firmware Identification
	4.5.10 Set Remanent Data
	4.5.11 Store Remanent Data Indication

	5 Status information
	5.1 Common status
	5.1.1 DPM Communication status
	5.1.2 DPM Status bits

	5.2 Extended status
	5.3 Process data status
	5.3.1 Run / Idle status
	5.3.2 Sequence counter

	6 Feature configuration via tag list
	7 Status and error codes
	7.1 Common status codes
	7.2 Generic AP
	7.3 DeviceNet Slave stack

	8 Appendix
	8.1 List of figures
	8.2 List of tables
	8.3 Legal Notes
	8.4 Contacts

