
EtherCAT Slave
Protocol API V4.9

DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

Table of Contents
1 Introduction ... 5

1.1 About this document .. 5
1.2 Functional Overview .. 5
1.3 System requirements... 5
1.4 Intended audience.. 5
1.5 Technical data... 6
1.6 Terms, abbreviations and definitions.. 7
1.7 References to documents... 8

2 Getting started... 9
2.1 Stack types .. 9

2.1.1 Loadable Firmware (LFW) .. 9
2.1.2 Linkable Object Module (LOM)... 9

2.2 Configuring the EtherCAT stack... 10
2.2.1 Configuration methods ... 10
2.2.2 Sequence and priority of configuration evaluation... 10
2.2.3 Configuration parameters.. 10
2.2.4 Application sets the configuration parameters .. 11
2.2.5 Configuration software... 12

2.3 Cyclic data exchange - Process data input and output.. 12
2.3.1 BusOn / BusOff .. 13

2.4 Acyclic data exchange .. 13
2.5 Object dictionary.. 13

3 Stack structure and stack functions ... 15
3.1 Structure of the EtherCAT Slave stack... 15
3.2 Base component .. 16

3.2.1 ESM task.. 16
3.2.2 Slave Information Interface (SII) ... 19
3.2.3 MBX task.. 20

3.3 CoE component ... 21
3.3.1 CoE task... 21
3.3.2 SDO task .. 22
3.3.3 ODV3 task.. 22

3.4 FoE component ... 25
3.5 Behavior when receiving a Set Configuration command .. 26
3.6 Watchdogs ... 26

3.6.1 DPM watchdog ... 26
3.6.2 SM Watchdog... 26
3.6.3 PDI Watchdog... 27

3.7 Usage of PHYs.. 27
4 Status information .. 28

4.1 Common status .. 28
4.2 Extended status... 28

5 Requirements to the application ... 29
5.1 Sequence within the host application.. 29
5.2 General initialization sequence.. 31
5.3 Explicit Device Identification .. 32

5.3.1 Initialization sequence.. 32
5.3.2 Set firmware parameter .. 34
5.3.3 Required entry in ESI file for Explicit Device Identification.. 35

5.4 Complete Access for object data held by application... 36
5.5 Dynamic PDO mapping.. 37

5.5.1 One application registered (application successful) .. 38
5.5.2 One application registered (application not successful) .. 39
5.5.3 Multiple applications registered (one application not successful) ... 40
5.5.4 One application registered Complete Access: (application successful)... 40

5.6 Protocol-specific aspects to regard for ODV3 API when using the EtherCAT Slave stack... 42
5.6.1 ODV3 access mask and flags ... 42

Table of Contents 2 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

5.6.2 Free memory available for ODV3 objects can decrease after firmware update .. 42
6 Application interface ... 43

6.1 General... 44
6.1.1 Register application service .. 44
6.1.2 Unregister application service.. 44
6.1.3 Set ready service... 44
6.1.4 Initialization complete service .. 46
6.1.5 Link status changed service.. 47

6.2 Configuration ... 48
6.2.1 Set configuration service... 48
6.2.2 Set extended configuration service.. 60
6.2.3 Set handshake configuration service .. 61
6.2.4 Set IO Size service.. 61
6.2.5 Set Station Alias service ... 62
6.2.6 Get Station Alias service... 63
6.2.7 Relation between Set configuration packet and ESI file... 63

6.3 EtherCAT state machine.. 65
6.3.1 Register for AL control changed indications service... 66
6.3.2 Unregister from AL control changed indications service... 66
6.3.3 AL control changed service.. 67
6.3.4 AL status changed service ... 69
6.3.5 Set AL status service ... 70
6.3.6 Get AL status service.. 71

6.4 CoE... 72
6.4.1 Send CoE emergency service... 72

6.5 Packets for Object Dictionary access ... 73
6.6 Slave Information Interface (SII in virtual EEPROM) .. 73

6.6.1 SII read service .. 74
6.6.2 SII write service .. 74
6.6.3 Register for SII write Indications service ... 75
6.6.4 Unregister from SII write indications service.. 76
6.6.5 SII write Indication service ... 76

6.7 Ethernet over EtherCAT (EoE) .. 78
6.7.1 Register for frame indications service... 79
6.7.2 Unregister from frame indications service... 79
6.7.3 Ethernet send frame service .. 80
6.7.4 Ethernet frame received service .. 81
6.7.5 Register for IP parameter indications service... 82
6.7.6 Unregister from IP parameter Indications service ... 83
6.7.7 Set IP parameter service ... 84
6.7.8 Get IP parameter service .. 86

6.8 File Access over EtherCAT (FoE)... 87
6.8.1 Set FoE options service... 88
6.8.2 FoE register file service .. 89
6.8.3 FoE unregister file service... 91
6.8.4 FoE write file service ... 92
6.8.5 FoE read file service .. 93
6.8.6 FoE file written Service... 96
6.8.7 FoE File Write Aborted Service ... 97

6.9 ADS over EtherCAT (AoE)... 98
6.9.1 AoE register port service... 99
6.9.2 AoE unregister port service.. 99

6.10 Vendor-specific protocol over EtherCAT (VoE) .. 100
6.10.1 Mailbox register type service .. 100
6.10.2 Mailbox unregister type service.. 101
6.10.3 Mailbox service .. 101
6.10.4 Mailbox send service ... 102

7 Special topics ... 104
7.1 For programmers.. 104

Table of Contents 3 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

7.2 Getting the receiver task handle of the process queue.. 104
8 Status and error codes... 105

8.1 Error LED ... 105
8.2 SDO abort codes ... 105

8.2.1 SDO abort codes ... 106
8.3 Correspondence of SDO abort codes and status / error codes .. 107
8.4 CoE emergency codes... 108

Appendix A: Appendix ... 109
A.1 List of figures .. 109
A.2 List of tables.. 110
A.3 List of snippets ... 114
A.4 Legal Notes ... 115
A.5 Contacts... 119

Table of Contents 4 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Chapter 1 Introduction

1.1 About this document

This manual describes the application interface of the EtherCAT Slave protocol stack V4 and provides information about
how an application has to use the EtherCAT Slave protocol stack.

1.2 Functional Overview

The stack has been written in order to meet the IEC 61158 Type 12 specification. The following features are implemented
in the stack:

■ EtherCAT Base Component
■ HAL initialization of the associated EtherCAT interface
■ EtherCAT interrupt handling
■ EtherCAT State Machine
■ Mailbox Receive handling
■ Mailbox Send handling

■ CANopen over EtherCAT Component
■ Master-to-Slave SDO communication
■ Object dictionary
■ Complete Access (supported from stack version 4.3)

■ Ethernet over EtherCAT Component
■ File Access over EtherCAT Component
■ Slave-to-slave communication only for netX 50, netX 51, and netX 52
■ Slave-to-slave communication in same EtherCAT cycle only possible with netX 50, netX 51, netX 52 using LOM

1.3 System requirements

This software package has the following system requirements to its environment:

■ netX chip as CPU hardware platform
■ operating system for task scheduling required

1.4 Intended audience

This manual is suitable for software developers with the following background:

■ Knowledge of the programming language C
■ Knowledge of the Hilscher Task Layer Reference Model

Further knowledge in the following areas might be useful:

■ Knowledge of the IEC 61158 Part 2-6 Type 12 specification documents
■ Knowledge of the IEC 61800-7-300
■ Knowledge of the IEC 61800-7-204

Software developers working with Linkable Object Modules should additionally have:

■ Knowledge of the use of the realtime operating system rcX

Chapter 1 Introduction 5 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

1.5 Technical data

NOTE For technical details, each firmware comes with a separate, chip specific data sheet document.

The data below applies to EtherCAT Slave firmware and contains some general information.

supported chips netX50

netX51

netX52

netX100,netX500

Supported protocols SDO server side protocol (Acyclic communication SDO Master-
Slave) (CoE component)

CoE emergency messages (CoE component)

Ethernet over EtherCAT (EoE component)

File Access over EtherCAT (FoE component)

AoE (supported from stack version 4.3)

SoE (supported from stack version 4.8, SoE and CoE cannot be
used at the same time)

Type Complex Slave

Licensing As this is a slave protocol stack, there is no license required

Configuration by packet or database (not supporting all features)

Diagnostic Firmware supports common diagnostic in the dual-port-memory
for loadable firmware.

Chapter 1 Introduction 6 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

1.6 Terms, abbreviations and definitions

Term Description

ADS Automation Device Specification

AL Application layer

AoE ADS over EtherCAT

AP (-task) Application (-task) on top of the stack

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CoE CANopen over EtherCAT

COS Change of State

DC Distributed Clocks

DL Data Link Layer

DPM Dual port memory

E2PROM (EEPROM) Electrically erasable Programmable Read-only Memory

EoE Ethernet over EtherCAT

ESC EtherCAT Slave Controller

ESM EtherCAT State Machine

ETG EtherCAT Technology Group

EtherCAT Ethernet for Control and Automation Technology

FMMU Fieldbus Memory Management Unit

FoE File Access over EtherCAT

IEEE Institute of Electrical and Electronics Engineers

LFW Loadable firmware

LOM Linkable object modules

LSB Least significant byte

MSB Most significant byte

OD Object dictionary

ODV3 Object dictionary Version 3

PHY Physical Interface (Ethernet)

PDO Process Data Object (process data channel)

RTR Remote Transmission Request

RxPDO Receive PDO

SDO Service Data Object (representing an acyclic data channel)

SHM Shared memory

SM Sync Manager

SoE Servodrive Profile over EtherCAT

SSC SoE Service Channel

TxPDO Transmit PDO

VoE Vendor Profile over EtherCAT

XML eXtensible Markup Language

Chapter 1 Introduction 7 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

1.7 References to documents

This document refers to the following documents. The referenced standard documents are available from ETG.
Additionally to these, there is a knowledgebase side for ETG which we suggest to check if spezification related questions
occur. It contains explanations or clarifications to the EtherCAT specification.

[1] Hilscher Gesellschaft für Systemautomation mbH: Dual-Port Memory Interface Manual, Revision 17, English, 2020-06.

[2] Hilscher Gesellschaft für Systemautomation mbH: Packet API, netX Dual-Port Memory, Packet-based services, Revision 4,
English, 2020-06.

[3] Hilscher Gesellschaft für Systemautomation mbH: netX EtherCAT Slave HAL Documentation

[4] Hilscher Gesellschaft für Systemautomation mbH: Object Dictionary V3 Protocol API, Revision 4, English, 2017.

[5] Hilscher Gesellschaft für Systemautomation mbH: Protocol API, Socket Interface, Packet Interface, Revision 5, English, 2019.

[6] Hilscher Gesellschaft für Systemautomation mbH: Protocol API, TCP/IP, Packet Interface, Revision 17, English, 2020-10.

[7] IEC 61158 Part 2-6 Type 12 documents (also available for members of EtherCAT Technology Group as specification
documents ETG-1000)

[8] IEC 61800-7

[9] EtherCAT Specification Part 5 – Application Layer services specification. ETG1000.5

[10] EtherCAT Specification Part 6 – Application Layer protocol specification. ETG1000.6

[11] EtherCAT Protocol Enhancements. ETG1020

[12] EtherCAT Indicator and Labeling Specification. ETG1300

[13] EtherCAT Slave Information Specification ETG2000

[14] EtherCAT Slave Information Annotation ETG2001

[15] Slave Information Interface (SII) ETG2010

[16] Modular Device Profile ETG5001

[17] Semiconductor Device Profile ETG5003

[18] Conformancetest Specification ETG7000

Chapter 1 Introduction 8 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

https://kb.hilscher.com/download/attachments/119493367/netX%20Dual-Port%20Memory%20Interface%20DPM%2017%20EN.pdf?version=1&modificationDate=1591255621217&api=v2
https://kb.hilscher.com/download/attachments/119493404/netX%20Dual-Port%20Memory%20packet-based%20services%20netX%2010%2050%2051%2052%20100%20500%20API%2004%20EN.pdf?version=1&modificationDate=1591256322795&api=v2
https://kb.hilscher.com/download/attachments/119493404/netX%20Dual-Port%20Memory%20packet-based%20services%20netX%2010%2050%2051%2052%20100%20500%20API%2004%20EN.pdf?version=1&modificationDate=1591256322795&api=v2
https://kb.hilscher.com/download/attachments/78770295/Object%20Dictionary%20V3%20API%2004%20EN.pdf?version=1&modificationDate=1496140530090&api=v2
https://kb.hilscher.com/download/attachments/104464682/Socket%20Packet%20Interface%20API%2005%20EN.pdf?version=1&modificationDate=1554708729594&api=v2
https://kb.hilscher.com/download/attachments/123040108/TCP%20IP%20-%20Packet%20Interface%20API%2017%20EN.pdf?version=1&modificationDate=1601996356446&api=v2

Chapter 2 Getting started
This chapter describes the basics of the Hilscher EtherCAT Slave stack. This includes information about

■ use cases and stack types (LFW/LOM)
■ the configuration of the EtherCAT Slave stack
■ principles of cyclic and acyclic data exchange
■ object dictionary

2.1 Stack types

The EtherCAT Slave protocol stack can be used in two different use cases:

■ Loadable Firmware (LFW)
■ Linkable Object Modules (LOM)

2.1.1 Loadable Firmware (LFW)

The application and the EtherCAT Slave Protocol Stack run on different processors. While the host application runs on a
computer typically equipped with an operating system (such as Microsoft Windows® or Linux), the EtherCAT Slave
Protocol Stack runs on the netX processor together with a connecting software layer, the AP task. The connection is
accomplished via a driver (Hilscher cifX Driver, Hilscher netX Driver) as software layer on the host side and the AP task as
software layer on the netX side. Both communicate via a dual port memory (DPM), into which they both can write and
from which they both can read. This situation is shown in Figure 1:

Figure 1. Usecase loadable Firmware

2.1.2 Linkable Object Module (LOM)

Both, the application and the EtherCAT Slave Protocol Stack are executed on netX. There is no need for drivers or a
stack-specific AP task. Application and protocol stack are statically linked.

Figure 2. Usecase loadable Firmware

If the stack is used as Linkable Object Module, the user has to create its own configuration file (which among others
contains task start-up parameters and hardware resource declarations).

Chapter 2 Getting started 9 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

2.2 Configuring the EtherCAT stack

2.2.1 Configuration methods

You can use one of the following methods to configure the EtherCAT Slave stack:

■ The application can set the configuration parameters using the Set configuration service to transfer the parameters
within a packet to the stack.

■ You can use one of the following configuration softwares to set the configuration parameters.
■ You can use SYCON.net configuration software (which creates a configuration file named CONFIG.NXD)
■ You can use the netX Configuration Tool (which creates a file named INIBATCH.NXD)

2.2.2 Sequence and priority of configuration evaluation

The EtherCAT Slave stack has implemented the following sequence and priority of configuration evaluation:

1. In case the file CONFIG.NXD is available, the stack will use the configuration parameters from this file and starts
working.

2. In case the file INIBATCH.NXD is available, the operating system rcX will send the configuration parameters from this
file to the EtherCAT Slave stack and the stack starts working.

3. The stack “waits” for the configuration parameters and remains unconfigured. The application has to use the Set
configuration service to configure the EtherCAT Slave and a Channel Init service to activate the configuration
parameters.

2.2.3 Configuration parameters

Basic configuration parameters

The basic configuration parameters set the values for e.g. startup behavior of the stack, the vendor id, product code, etc.
The application has to set these parameters with the Set configuration service.

Component configuration parameters

The EtherCAT Slave stack consists of several components. Each component has is its own parameters (configuration

structure).
The following table lists the components of the stack.

Component Meaning

AoE ADS over EtherCAT

Data structure for configuration of AoE component actually just reserved:
ECAT_ESM_CONFIG_AOE_T

CoE CANopen over EtherCAT

Data structure for configuration of CoE component:
ECAT_SET_CONFIG_COE_T

EoE Ethernet over EtherCAT

Data structure for configuration of EoE component:
ECAT_SET_CONFIG_EOE_T

FoE File Access over EtherCAT

Data structure for configuration of FoE component:
ECAT_SET_CONFIG_FOE_T

SoE Servodrive Profile over EtherCAT

Data structure for configuration of SoE component:
ECAT_SET_CONFIG_SOE_T

Sync Modes Synchronization modes

Data structure for configuration of Sync Modes component:
ECAT_SET_CONFIG_SYNCMODES_T

Chapter 2 Getting started 10 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Component Meaning

Sync PDI Process data interface for synchronization

Data structure for configuration of Sync PDI component:
ECAT_SET_CONFIG_SYNCPDI_T

UID Unique Identification

Data structure for configuration of UID component:
ECAT_SET_CONFIG_UID_T

Boot Mbx Boot mailbox

Data structure for configuration of Bootmailbox component:
ECAT_SET_CONFIG_BOOTMBX_T

Device Info Device information

Data structure for configuration of Device Info component
ECAT_SET_CONFIG_DEVICEINFO_T

Sm Length Sync Manager

Data structure for configuration of Syncmanagers address spaces
ECAT_ESM_CONFIG_SMLENGTH_DATA_T

Table 1. Component configuration parameters

These data structures need only be filled with data if they are used and evaluated. This depends on the flags within
parameter Component Initialization of the Base Configuration Parameters described above. Each flag controls whether

the data structure for a single component is evaluated (flag set) or not (flag equals 0).
Please refer to chapter Set configuration service for a detailed programming reference.

Extended configuration parameters

Since version V4.10 the stack supports an extended configuration packet that offers the opportunity to introduce new
configuration parameters without increasing the size of the configuration packet itself. The extended configuration has to
be send after a standard (basic) configuration packet. Its values apply after sending the Channel Init (Bus on).

The content of an extended configuration packet is defined by its type. It is possible to send several packets with different
types. Configurations overwrite configurations of the same type which were send before. Possible types of extended
configuration are shown the following list. Details are in chapter Set extended configuration service.

Extended Configuration Type Meaning

ECAT_SET_CONFIG_STRUCTURE_TYPE_SMS Changes the standard mailbox start addresses and size. This packet is mainly
used for a device replacement which requires different start addresses to keep
the ESI file consistent to the former device (not from hilscher).

ECAT_SET_CONFIG_STRUCTURE_TYPE_BOOTM
BX

Sets bootstrap mailbox start addresses and size. This packet is mainly used for a
device replacement which requires different start addresses to keep the ESIfile
consistent to the former device (not from hilscher).

Table 2. Extended configuration parameters

2.2.4 Application sets the configuration parameters

In case the application configures the EtherCAT Slave, the application has to perform the following steps:

1. Configure the device using the Set configuration service. This provides the device with all parameters needed for
operation. These include both basic parameters for I/O sizes and for identification such as Vendor ID and Product
code as well as the component configuration. When the stack confirms the Set Configuration to the application, the

given configuration has been evaluated completely and prepared for being applied.
If several configuration packets are sent from the application to the stack, the stack uses the last received configuration
packet before the application sends a Channel Init.

2. (optional) Configure the device by sending one ore more extended configurations using the Set extended
configuration service. Sending a standard configuration (1) again after sending extension configurations will delete all
extended configuration parameters.

3. Perform the Channel Init (for further information, see reference [1]) to activate the configuration parameters. As a result,
the stack is ready to start communication with an EtherCAT Master. A Channel Init does not unregister already
registered services.

Figure 3 shows the Set Configuration and Channel Init sequence.

Chapter 2 Getting started 11 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Highlight

Figure 3. Set Configuration / Channel Init

2.2.4.1 Reconfiguration

It is possible to reconfigure the stack at any time. To do so, simply send a new configuration to the stack followed by a
Channel Init request [1]. Sending the new configuration without the Channel Init request will not have an effect to the
running communication. The new parameters will be stored in the RAM only. Sending the Channel Init request will stop
any communication and take over the new parameters. A Channel Init does not unregister already registered services. As
an alternative for complete reconfiguration, specific parameters can be reconfigured separately:

■ The IO Size: See section Set IO Size service which contains two parameters only: input length and output length. Thus,
it is not necessary to send a complete configuration packet twice

■ The Synchronisation parameters: Needed to change the synchronization mode in case, more than one synchronization
mode supported by the device. See section _set_handshake_configuration_service.

2.2.4.2 Delete configuration

The deletion of the configuration is not possible in EtherCAT because this would stop the physical interface to work and
thus break the logical ring structure and cut the communication with the following slaves in the topology.

2.2.4.3 Configuration lock

If the configuration of the stack is locked as described in [1], the following behavior is implemented in the stack:

■ new configuration packets are not accepted.
■ a Channel Init Request will be rejected.

2.2.5 Configuration software

The configuration via SYCON.net or netX Configuration Tool are described in separate manuals.

2.3 Cyclic data exchange - Process data input and output

This section describes how the application can get access to the cyclic IO data which is exchanged with the EtherCAT
Master. The EtherCAT Slave stack provides different ways to exchange this data. Depending on the user’s application
only one of these methods may be used:

■ Use case loadable firmware: If the netX chip is used as dedicated communication processor while the user’s
application runs on its own host processor, I/O data can only be accessed using the mechanism described in the Dual-
Port Memory Interface Manual [1].

■ Use case linkable object modules: If the application is executed on the netX chip together with the EtherCAT Slave
Stack there exist two possibilities to access the cyclic I/O data:
■ If the Shared Memory Interface is used, the application has to access the I/O data using the shared memory

interface API. As this is basically an emulation of the dual-port memory interface for applications running local on the
netX chip, the interface is similar to using the netX as dedicated communication processor.

■ If the user application is not using the shared memory interface, the I/O data is accessed using a function call API.
This approach is also known as “packet API”. It removes any overhead from the Shared Memory Interface.

EtherCAT uses the concept of a cyclic process data image. Each master or slave of an EtherCAT network has an image of

Chapter 2 Getting started 12 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

input and output data. This image is updated using cyclic Ethernet frames.
More information on how cyclic data exchange is accomplished with suitable PDO mappings can be found at subsection
PDO mapping for cyclic communication.

Input and output data of EtherCAT Slave for netX 100, 500

Offset in ESC Area Length (byte) Type

0x1000 Output block 512 Read/Write

0x2680 Input block 512 Read/Write

Table 3. Input and output data netX 100, 500

Input and output data of EtherCAT Slave for netX 50, 55, 52

Offset in ESC Area Length (byte) Type

0x1000 Output block 1024 Read/Write

0x2680 Input block 1024 Read/Write

Table 4. Input and output data netX 100, 500

2.3.1 BusOn / BusOff

The BusOn/Off bit controls whether the stack is allowed to proceed further than Pre-Operational state. If the bit is set, the
stack can be brought into Operational state by the master e.g. TwinCAT. If the bit is cleared, the stack will fall back to Pre-
Operational state and notify the master about this by setting the code ECAT_AL_STATUS_CODE_HOST_NOT_READY

in the AL status Code area.
#define ECAT_AL_STATUS_CODE_HOST_NOT_READY 0x8000

For a list of available AL status Codes please refer to the EcsV4_Public.h file.

2.4 Acyclic data exchange

Acyclic communication: Application to EtherCAT Slave

The EtherCAT Slave stack uses two mailboxes in the dual-port memory to communicate (acyclic communication) with the

application.
This acyclic communication via the dual-port memory is done through channels which each have two mailboxes. A Send
Mailbox for transfer from host system to firmware or and a Receive Mailbox transfers from firmware to host system. Each
mailbox can hold one packet at a time. The netX firmware stores packets that are not retrieved by the host application in a
packet queue.

NOTE The packet queue has limited space and may fill up so new packets maybe lost. To avoid these data loss
situations, it is strongly recommended to empty the mailbox frequently, even if packets are not
expected by the host application.

Acyclic communication: EtherCAT Master to EtherCAT Slave via Service Data Objects

For acyclic data exchange between an EtherCAT Slave and an EtherCAT Master the EtherCAT mailbox is used. Acyclic
data exchange is done via Service Data Objects. These objects are managed by the ODV3 task. For more information
refer to the separate ODV3 documentation [4].

2.5 Object dictionary

The EtherCAT Slave uses objects to hold values and device parameters. Those objects can be accessed by the

application and also from the EtherCAT Master which is reaching them via the EtherCAT network.
The stack can be used with the default object dictionary or with a custom object dictionary.

Default object dictionary

The default object dictionary contains all objects that are necessary to bring the slave to operational state.
In the default object dictionary, the objects which define the process input data and the process output data, are handled

as single bytes and each byte is represented by a subobject in the object dictionary.

If a configuration software is used to configure the EtherCAT Slave device, the default object dictionary has to be used.

Chapter 2 Getting started 13 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

See Section Default object dictionary for detail of the usecase.

Custom object dictionary

The custom object dictionary can be used to structure the process input data and the process output data with

several/different data types e.g. to use data type UINT32. This requires that the application program configures the stack.
The custom object dictionary contains only a minimal object dictionary and the application has to add all mandatory

objects for EtherCAT and thw objects required by the application.
Section Custom object dictionary based on minimal object directory describes the minimal object dictionary.

Chapter 2 Getting started 14 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Chapter 3 Stack structure and stack functions

3.1 Structure of the EtherCAT Slave stack

The following figure shows the internal structure of the EtherCAT Slave stack.

Figure 4. Firmware structure

The single tasks provide the following functionality:

■ The AP task represents the interface between the EtherCAT Slave protocol stack and the dual-port memory and is
responsible for:
■ Control of LEDs
■ Diagnosis
■ Packet routing
■ Update of the IO data

■ The EtherCAT state machine task (ESM task) manages the states and operation modes of the protocol stack,
generates AL control events, and sends them to all registered receivers.

■ The EtherCAT Mailbox/DL task (MBX task) provides the low-level part of data communication.
■ The SDO task is used to perform SDO communication via mailboxes, i.e. acyclic communication such as service

requests.

Chapter 3 Stack structure and stack functions 15 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

■ The CoE task handles the CoE related mailbox messages and routes them to the appropriate tasks. In addition, the CoE
task provides a mechanism for sending CoE emergency messages.

■ The ODV3 task handles access to the object dictionary (acyclic communication).

The triple buffer mechanism provides a consistent synchronous access procedure from both sides (DPM and AP task).

The triple buffer technique ensures that the access will always affect the last written cell.
You can find information about the various tasks:

■ In section ESM task
■ In section MBX task
■ In section CoE task
■ In section SDO task
■ In reference [4] for the ODV3 task

In the use case “loadable firmware”, the dual-port memory is used to exchange information, data and packets. The
EtherCAT Slave AP task takes care of mapping the EtherCAT Stack API to the Dual-Port-Memory. The application only
accesses the AP.

Overview

The main topics described in this chapter are:

■ Base Component
■ CoE Component
■ EoE Component
■ FoE Component

3.2 Base component

3.2.1 ESM task

The ECAT_ESM task (ECAT_ESM Task) coordinates all tasks that have registered themselves with their respective
queues as AL control event receivers. Additionally, it notifies the mailbox associated tasks of the current state and sets
their operation modes.

3.2.1.1 EtherCAT State Machine (ESM)

Purpose

The states and state changes of the slave application can be described by the EtherCAT State Machine (ESM). The ESM
implements the following four states which are precisely described in the EtherCAT specification (see there for
reference):

■ Init: The EtherCAT Slave is initialized in this state. No real process data exchange happens.
■ Pre-Operational: Initialization of the EtherCAT Slave continues. No real process data exchange happens. The master

and the slave communicate acyclically via mailbox to set parameters.
■ Bootstrap is an optional state, it´s purpose is mainly the firmwareupdate. Like Pre-Operational it supports mailbox

communication and no process data.
■ Safe-Operational: In this state, the EtherCAT Slave can process input data. However, the output data are set to a ‘safe’

state.
■ Operational: In this state, the EtherCAT Slave is fully operational.

Chapter 3 Stack structure and stack functions 16 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Figure 5. State diagram of EtherCAT State Machine (ESM)

Closely connected to the ESM are the AL control register and the AL status register of the EtherCAT Slave [10].

3.2.1.2 AL control register and AL status register

■ The AL control register contains the requested state of the EtherCAT slave.
■ The AL status register contains the current state of the EtherCAT slave.

Handling and controlling the EtherCAT State Machine

The AL control register and the AL status register provide a synchronization mechanism for state transitions between the
master and the slave. They are precisely described in the EtherCAT specification, see there for more information.

AL status register related

The Hilscher EtherCAT slave stack provides mechanisms for user applications to get informed about state changes of the
EtherCAT State Machine (ESM). Furthermore an application can control state changes of the ESM if necessary. Such
mechanisms are needed for the realization of complex EtherCAT slaves [9]. If an application wants to get informed about

state changes it has to register via RCX_REGISTER_APP_REQ. As result the stack will send an
ECAT_ESM_ALSTATUS_CHANGED_IND to the application.

Figure 6. Sequence diagram of state change with indication to application/host

The packets mentioned above indicate that a state change has already happened. An application has no chance to control

Chapter 3 Stack structure and stack functions 17 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

or interrupt a transition; it just gets informed about it.
To unregister use the RCX_UNREGISTER_APP_REQ packet.

AL Control register related

If an application additionally wants to control ESM state changes it has to register for AL Confirmed Services.+
Registering for AL Confirmed Services may be necessary e.g. in following cases:

■ Servo Drive with use of Distributed Clock (Synchronization)
In Motion Control applications it is of utmost importance that all devices work synchronized. Therefore drives often use
a Phased Locked Loop (PLL) to synchronize their local control loop with the bus cycle. Before this has not happened,
the device is not allowed to proceed to Operational state [10]. Using AL Confirmed services, an application can delay
the start up process and synchronize their local control loop first. After the local PLL has 'locked in' the device may
proceed to the Operational state.

■ CoE Slaves with dynamic PDO mapping allow a flexible arrangement of process data. The master configures the layout
of the process data which the slave has to transmit during cyclic operation. Therefore CoE Slaves often delay the
transition to the state Safe-Operational and set up copy lists before eventually proceeding to the requested state. This
approach allows the slaves just to process the copy lists in cyclic operation, regardless to the configured mapping,
which is very fast.

When using LFW or SHM API, the AL control changed service is based upon a packet mechanism. For registering the
service use Register for AL control changed indications service. To unregister use Unregister from AL control changed
indications service. After registering for AL control changed service, the stack informs an application via AL control
changed indication packet each time when a master has requested a state change of the ESM via AL control register
(0x0120). The stack will remain in the current state until the application triggers a state change via a Set AL status request.
This enables an application to delay or even interrupt a state change. Furthermore it can signalize errors to the master
using AL status Codes (see the EcsV4_Public.h file, or [10]).

Figure 7. Sequence diagram of EtherCAT state change controlled by application/host

NOTE There will no indications be sent when switching downwards, for instance when switching from
Operational down to Init state.

Chapter 3 Stack structure and stack functions 18 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Figure 8. Sequence diagram of state change controlled by application/host with additional AL status changed indications

3.2.2 Slave Information Interface (SII)

As mandatory element, each EtherCAT slave has a slave information interface (SII) [15] which is accessible by the slave.
Physically, this is a special storage area for slave-specific data in an EEPROM memory chip. Its size is varaiable in the
range of 1 kBits – 512 kBits (128 – 65536 Bytes). For loadable firmware, the size of the SII is limited to 64 K. Because there

is no separate EEPROM in the netX chips, the SII is virtually created in the netX.

After configuration, the firmware writes the content of the SII to the virtual EEPROM. In case the user wants to change the
SII data, SII related functions are available as described in section Slave Information Interface (SII in virtual EEPROM). The
SII has to be written on every startup of the device and should not overwrite the area before address 0x80 of the SII,
which is written by the stack, using the information it got from the configuration.

Structure

The SII can be considered as a collection of persistently stored objects. For instance, these objects may be: *
configuration data * device identity * application information data

Masters access the Slaves’ SII in order to obtain slave-specific information for instance for administrative and

configuration purposes.
The Hilscher EtherCAT Slave Stack provides following packets for Slave Information Interface (SII) interaction:

■ SII read service
■ SII write service
■ Register for SII write Indications service
■ Unregister from SII write indications service
■ SII write Indication service

The contents stored in the SII can be divided into the following separate groups of parameters:

Address Range Value/Description

0x0000 - 0x0007 EtherCAT Slave Controller configuration area

0x0008 - 0x000F Device identity (corresponds to CoE object 1018h)

0x0010 – 0x0013 Delay configuration

Chapter 3 Stack structure and stack functions 19 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Address Range Value/Description

0x0014 - 0x0017 Configuration data for the Bootstrap Mailbox

0x0018 - 0x001B Configuration data for the Standard Send/Receive Mailbox

0x001C - 0x003F Other settings

> 0x003F Optionally additional information may be present

Table 5. Slave Information Interface structure as defined in IEC 61158, part 6-12

NOTE The addresses mentioned in the table above relate to 16 bit words.

The optional additional information area (addresses > 0x003F) is organized by different categories. There are standard
categories and vendor-specific categories allowed.

The following standard categories are available:

Category Description Category
Type

Supported by the Hilscher
EtherCAT Protocol Stack

Is generated at ‘Set
Configuration’

NOP No info 0 Yes No

STRINGS String repository for other Categories
structure

10 Yes Yes

Data types Data Types (reserved for future use) 20 No No

General General information structure 30 Yes Yes

FMMU FMMUs to be used structure 40 Yes Yes

SyncM Sync Manager Configuration structure 41 Yes Yes

TXPDO TxPDO description structure 50 Yes No

RXPDO RxPDO description structure 51 Yes No

PDO Entry PDO Entry description structure - Yes No

Table 6. Available standard categories

All categories have a header containing among others the length information of the rest of the data of the category.
Unknown categories may be skipped during evaluation. In general, each of these categories categories is structured as
follows:

Parameter Address Data Type Value/Description

1st Category Header 0x40 UNSIGNED15 Category Type

0x40 UNSIGNED1 Reserved for vendor-specific
purposes

0x41 UNSIGNED16 Length String1

1st Category data 0x42 Category dependent String1 Data

2nd Category Header 0x40 + x UNSIGNED15 Category Type

0x40 UNSIGNED1 Reserved for vendor-specific
purposes

0x41 UNSIGNED16 Length String2

2nd Category data 0x42 Category dependent String2 Data

. . .

Table 7. Slave Information Interface Categories

Hilscher does not define any additional vendor-specific categories of its own. More details about the SII structure can be
obtained from or [15] which summarizes the most important Information. Other references are the standard document IEC
61158, part 6-12, section 5.4 “SII coding” in [10], section “Application layer service definition” contains additional
information [9]

3.2.3 MBX task

Purpose

On the first hand, the ECAT_MBX task handles all mailbox messages sent by the master and sends them further to the
registered queues according to the type they specified to receive. The respective parts of the EtherCAT stack e.g. CoE or

Chapter 3 Stack structure and stack functions 20 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

FoE hook to this task to perform their services. On the other hand, the ECAT_MBX task handles all mailbox messages to
be sent to the master. Additionally, its state is controlled by the ESM task according to the requested state changes. The
respective parts of the EtherCAT stack e.g. CoE or FoE hook to this task to perform their services.

The ECAT_MBX task provides the basis for application level protocols such as:

■ CoE (CANopen over EtherCAT)
■ FoE (File transfer over EtherCAT)
■ SoE (Servodrive over EtherCAT)

3.3 CoE component

The main topics described in this chapter are:

■ CoE task
■ SDO task
■ Object Dictionary V3

Purpose

CoE (CANopen over EtherCAT) can be used for two purposes
1. It can be used for acyclic communication, which is mainly applied for accessing and configuring service data such

as communication parameters or device-specific parameters. These service data are stored as service data objects
(SDO) within an object dictionary (OD). The EtherCAT Slave protocol stack V4 from Hilscher uses the Object
Dictionary V3, which is described in [5]

2. It can be used to provide an easy migration path from CANopen to EtherCAT. CoE emulates a CAN-based
environment working on EtherCAT and allows the use of CAN profiles.

In detail, the CoE functionality allows:

■ SDO download: Acyclic data transfer from the master to a slave
■ SDO upload: Acyclic data transfer from a slave to the master
■ SDO information service: reading SDO object properties (object dictionary) from a slave
■ CoE emergency Requests

The host can initialize uploads, downloads and information services. Emergencies are generated by slaves. The master
collects them and shows them via the slave diagnosis. Also cyclic communication is affected from CoE, as the
communication parameters related to PDOs can be configured via SDO to specific object dictionary entries. For more
information see PDO mapping for cyclic communication. For details see [9] and [10]

3.3.1 CoE task

The ECAT_COE task is the main handler of all CoE related mailbox messages and routes them to the tasks associated
with those inside the CoE component. In addition, the ECAT_COE task provides a mechanism for sending CoE
emergency messages.

3.3.1.1 CoE Emergencies

CoE emergencies are sent from the slaves to the master when abnormal states or conditions occur. A CoE emergency
message contains a standard CANopen emergency frame consisting of

■ Error code (2 bytes)
■ Error register (1 byte)
■ Data (5 bytes)

Additional data may be added to the CoE emergency message. The master collects the CoE emergencies and stores up
to five emergencies per slave. If further emergencies occur, they are dropped. The existence of at least one emergency is
represented in the slave diagnosis of the master. The host can read out these emergencies. The host decides whether it
deletes the emergencies or they remain in the master.

■ See section Send CoE emergency service for more information about the CoE emergency Service.
■ See section CoE emergency codes for a list of CoE emergency codes and their meanings.

Chapter 3 Stack structure and stack functions 21 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

3.3.2 SDO task

The SDO task does not have any packets for the host application to communicate with. The complete packet interface for
the SDO functionality of the EtherCAT Slave protocol stack V4 is provided by ODV3 and described in an own separate
manual [4].

3.3.3 ODV3 task

This task acts as a connection to the object dictionary V3 described in [4]. It basically provides the following functionality:

■ Basic services for reading and writing objects
■ Information services for retrieving object-related information
■ Management services for creating, maintaining and deleting objects

The following topics also need to be taken into account:

■ Access rights
■ Complete Access
■ CoE communication area for EtherCAT
■ Custom object dictionary based on minimal object directory
■ Description of objects of minimal object dictionary

3.3.3.1 Access rights

Access rights that apply for the EtherCAT Slave protocol stack V4 are listed in [4]. Additionally, the following additional
combinations have been defined:

ECAT_OD_READ_INIT = (0x4000) /*internal, not in ethercat spec*/
ECAT_OD_WRITE_INIT = (0x8000) /*internal, not in ethercat spec*/
ECAT_OD_READ_ALL = (ECAT_OD_READ_PREOP|ECAT_OD_READ_SAFEOP|ECAT_OD_READ_OPERATIONAL|ECAT_OD_READ_INIT)
ECAT_OD_WRITE_ALL = (ECAT_OD_WRITE_PREOP|ECAT_OD_WRITE_SAFEOP|ECAT_OD_WRITE_OPERATIONAL|ECAT_OD_WRITE_INIT)
ECAT_OD_ECAT_ALL =
(ECAT_OD_SETTINGS|ECAT_OD_BACKUP|ECAT_OD_MAPPABLE_IN_TXPDO|ECAT_OD_MAPPABLE_IN_RXPDO|ECAT_OD_READ_PREOP|ECA
T_OD_READ_SAFEOP|ECAT_OD_READ_OPERATIONAL|ECAT_OD_WRITE_PREOP|ECAT_OD_WRITE_SAFEOP|ECAT_OD_WRITE_OPERATIONA
L|ECAT_OD_MAPPABLE_IN_SAFE_INPUTS|ECAT_OD_MAPPABLE_IN_SAFE_OUTPUTS|ECAT_OD_MAPPABLE_IN_SAFETY_PARASET)
ECAT_OD_ACCESS_ALL = (ECAT_OD_READ_ALL | ECAT_OD_WRITE_ALL)

(The vertical bar | stands for logical OR)

3.3.3.2 CoE communication area for EtherCAT

Index (hex) Object code Name Data type M/O/C

1000 VAR Device Type UNSIGNED32 M

1001 VAR Error Register UNSIGNED8 O

1008 VAR Manufacturer Device
Name

VisibleString O

1009 VAR Manufacturer Hardware
Version

VisibleSting O

100A VAR Manufacturer Software
Version

VisibleSting O

1018 RECORD Identity Object Identity(0x23) M

1600 RECORD 1st receive PDO Mapping PDO Mapping (0x21) C

1601 RECORD 2st receive PDO Mapping PDO Mapping (0x21) C

… … … … …

Table 8. Abstract of the CoE Communication Area (0x1000 - 0x1FFF)

See [10] for the complete list.

Chapter 3 Stack structure and stack functions 22 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

3.3.3.3 Custom object dictionary based on minimal object directory

Using the ECAT_SET_CONFIG_COEFLAGS_USE_CUSTOM_OD configuration flag, the user can enable or disable
working with a custom object dictionary. If this configuration flag is not set a default object dictionary will be created by
the stack. If this configuration flag is set only a minimal object dictionary will be created. The following contains a list of
the objects contained in this minimal object dictionary. Note that without providing additional objects by a user

application an EtherCAT master will not be able to bring the slave to Operational state.
The stack always creates the following, regardless of using a custom object dictionary or not.

Index (hex) Subindex Object Comment

1000 00 Device Type

1018 00 Identity Object Fix value set to 4

1018 01 Vendor ID

1018 02 Product code

1018 03 Revision number

1018 04 Serial number

Table 9. Minimal object dictionary

Definitions of the object 0x1000 and 0x1018 can be found in [10]

NOTE Each object to be used for process data transfer has to be byte aligned.

3.3.3.4 Default object dictionary

The stack creates a default object dictionary if the configuration flag
ECAT_SET_CONFIG_COEFLAGS_USE_CUSTOM_OD is set to zero.

The default object dictionary contains all objects that are necessary to bring the slave to Operational state. The online
objects which are created by the stack match with the objects described in the ESI file. The RxPDO and TxPDO objects
described in the ESI file are the maximum possible PDO´s which can be transferred/created. After the configuration was
send to the stack, it creates a set of process data objects according to the configured process data length. (This set is a
subset of the process data objects in the ESI file.) If the process data size is changed by a Set IO Size command, the
present objects are deleted and a new set of objects is created. For every byte of process data, a single subobject is

created in the OD. The order is not changeable and process data is allways copied in this order.
The object dictionary created in this way is not sufficient for every user. To serve special needs it is possible to create a
custom object dictionary see Custom object dictionary based on minimal object directory. A custom object dictionary is
necessary if PDO objects with different sizes to 1 byte are required. The default objects cannot be changed and additional
processdata objects can not be added to the default object dictionary. If only additional SDO objects are needed, they can
be added to the default objects created by the stack. For this case we recommend using the object range 0x4000 to
0x5FFF in order to avoid conflicts with process data objects.

The following table shows the objects created by the default OD.

Index (hex) Subindex Object Comment

1000 00 Device Type

100A 00 Manufacturer Software Version

1018 00 Identity Object Fix value set to 4

1018 01 Vendor ID

1018 02 Product code

1018 03 Revision number

1018 04 Serial number

1600 00 RxPDO Number of mapped process data objects, value range 1…200 (not
present if output data is zero) Direction: master → slave

1601 00 RxPDO Number of mapped process data objects, value range 1…200 for

data bytes 200 – 399 (not present if output data ⇐ 200 bytes)

160x … … …

1A00 00 TxPDO Number of mapped process data objects, value range 1…200 (not
present if output data is zero) Direction: slave → master

Chapter 3 Stack structure and stack functions 23 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Index (hex) Subindex Object Comment

1A01 00 TxPDO Number of mapped process data objects, value range 1…200 for

data bytes 200 – 399 (not present if output data ⇐ 200 bytes)

1A0x … … …

1C00 00 Sync Manager communication
types

Number of elements (max 8 sync managers are defined in default
OD)

1C00 01 Sync Manager 0 Value: 0x01

1C00 02 Sync Manager 1 Value: 0x01

… … … …

1C10 00 Sync Manager 0 PDO
assignment

0 because Receive Mailbox

1C11 00 Sync Manager 1 PDO
assignment

0 because Transmit Mailbox

1C12 00 Sync Manager 2 PDO
assignment

Number of assigned mapping objects (not present if output data is
zero) Direction: master → slave

1C12 01 Subindex 001 0x1600 (not present if output data = zero)

1C12 02 Subindex 002 0x1601 (only present if output data exceeds 200 byte)

… … … …

1C13 00 Sync Manager 3 PDO
assignment

Number of assigned mapping objects (not present if input data is
zero) Direction: slave → master

1C13 01 Subindex 001 0x1A00 (not present if input data = zero)

1C13 02 Subindex 002 0x1A01 (only present if input data exceeds 200 byte)

… … … …

2000 00 Outputs Number of elements, value 0..200 (only present if output data
configured)

2000 01 1 Byte Out (0) Acyclically read value of this process data byte

… … … …

3000 00 Inputs Number of elements, value 0..200 (only present if input data
configured)

3000 01 1 Byte In (0) Acyclically read value of this process data byte

… … … …

Table 10. Default object dictionary

3.3.3.5 PDO mapping for cyclic communication

The process data objects (PDOs) provide the interface to the application objects. They are assigned to the entries in the
object dictionary. The process of assignment is denominated as PDO mapping and is practically accomplished via a
specific mapping structure in the object dictionary (for EtherCAT: Sync Manager PDO assignment (Objects 0x1C10 –

0x1C2F)).
This mapping structure can be found at: * 0x1600-0x17FF (0x1600 for the first RxPDO) * 0x1A00-0x1BFF (0x1A00 for the
first TxPDO)

The following figure explains the relationship between object dictionary (left upper part), PDO mapping structure (right
upper part) and the resulting PDO containing the application objects to be mapped (lower part).

Chapter 3 Stack structure and stack functions 24 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Figure 9. Mapping scheme for a PDO

One PDO mapping entry requires 32 bit. It consists of: * 16 bit containing the index of the object dictionary entry
containing the application object to be mapped * 8 bit containing the subindex of the object dictionary entry containing
the application object to be mapped * 8 bit containing the length information (in Bit).

The use of a mapping structure must be configured. In EtherCAT, this is done by the Sync Manager PDO assignment
(Objects 0x1C10 – 0x1C2F). Usually 0x1C12 contains the RxPDO´s (e.g. 0x1600) and 0x1C13 the TxPDO´s (0x1A00)

Sometimes it is neccesary to change the mapping after startup of the device (e.g. for modular devices). For information on
this topic refer to Section 5.5 .

3.3.3.6 Complete Access

The SDO Complete Access mechanism allows to read out a whole object with all subobjects at once. The ODV3 task
translates those accesses, so they appear as single accesses to the application side and no special handling is required. A
common use case is to handle the download of startupparameters for dynamic process data. For information on this topic
refer to One application registered Complete Access: (application successful).

3.4 FoE component

The EtherCAT standard defines various mailbox protocols. One of these protocols is File Access over EtherCAT (FoE).
This protocol is similar to the well-known Trivial File Transfer Protocol (TFTP). By the help of FoE it is possible to
exchange files between an EtherCAT master and an EtherCAT slave device. When downloading a file via FoE to a
Hilscher EtherCAT slave the file will be copied to the local file system of the device. For a slave supporting FoE this
support has to be indicated in ESI and SII. FoE can be used in any state the mailbox is activated, these are all states
except Init state.

FoE can be used to read files or store files physically in the filesystem (only system volume is possible) or with the virtual
file option, which means that the application holds the data and handles the read, write operations (no data on filesystem).
The virtual option can be a solution if the file does not fit in the filesystem. Names for files which use the filesystem are
restricted to the 8.3 convention, virtual filenames can be longer.

A very important use case for FoE is a firmware download to an EtherCAT slave in order to update the used slave
firmware.

A firmware download/update needs following steps

■ If not done: Download of EtherCAT slave firmware (not by FoE)
■ Slave stack configuration according to ESI (FoE set in ESI)
■ Slave shall be connected to EtherCAT master

Chapter 3 Stack structure and stack functions 25 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

■ Slave shall be set at least to EtherCAT state Pre-Operational
■ Firmware file (*.nxf) shall be downloaded by FoE from master to slave
■ Slave stack will check file

■ OK: firmware will be used after next power cycle
■ error: Error “Illegal” (see ETG1000.6, Table 92 – Error codes of FoE) will be reported by slave to master

3.5 Behavior when receiving a Set Configuration command

The following rules apply for the behavior of the EtherCAT Slave protocol stack when receiving a set configuration
command:

■ The configuration packets name is
■ ECAT_SET_CONFIG_REQ for the request and
■ ECAT_SET_CONFIG_CNF for the confirmation.

■ The configuration data are checked for consistency and integrity.
■ In case of failure all data are rejected with a negative confirmation packet being sent.
■ In case of success the configuration parameters are stored internally (within the RAM).
■ The parameterized data will be activated only after a channel initialization has been performed.
■ No automatic registration of the application at the stack happens.
■ The confirmation packet ECAT_SET_CONFIG_CNF only transfers simple status information, but does not repeat the

whole parameter set.

If you allowed the automatic start of the communication (can be chosen within the Set Configuration Request packet) the
device will allow to advance the ESM state beyond Pre-Operational state. Otherwise, setting of the BusOn bit via
ApplicationCOS (see [1]) is required.

If a watchdog error occurs (Watchdogs) prior to setting the BusOn bit via ApplicationCOS , this will prohibit advancing to
ESM states beyond Pre-Operational. You can recognize this situation by the unusual characteristic signal of the LEDs and
an AL control changed indication packet with indicated EtherCAT states Init or Pre-Operational being sent to the host. In
this case a channel reset is required. If you intend to use the DPM interface, also refer to the related DPM manual [1].

3.6 Watchdogs

Three watchdogs exist in the context of the EtherCAT Slave stack.

■ The DPM Watchdog monitors the communication between the host application and the stack via the dual-port
memory.

■ The SM Watchdog monitors the process data received from the EtherCAT network.
■ The PDI Watchdog allows the master to monitor wheather the EtherCAT Slave is still running

3.6.1 DPM watchdog

The DPM Watchdog is relevant for LFW users only. The application and the EtherCAT Slave uses two watchdog cells in
the dual-port-memory for each communication channel (details see [1]). The watchdog time is configured with the basic
configuration parameters of the Set configuration service. If the DPM Watchdog expires, the EterCAT Slave will return to

the Pre-Operational state. The stack notifies the master with the AL status Code:

#define ECAT_AL_STATUS_CODE_DPM_HOST_WATCHDOG_TRIGGERED 0x8002
The application has to use Channel Init service, because the EtherCAT Slave requires a Channel Init to leaves this state.
For a list of available AL status Codes, see in EcsV4_Public.h file.

3.6.2 SM Watchdog

The EtherCAT Slave uses the SyncManager Watchdog to monitor the receiving of process data. This watchdog is only
related to output data direction mapped in RxPDO´s, meaning data send from the master to the device, usually transfered
by Syncmanager 2. The default value of the SM watchdog is set to 100 ms, value 0 deactivates the watchdog.

In case the EtherCAT Slave has input data only, the watchdog will not be started at all. If the EtherCAT Slave receives no
process data within the configured time, the AL status Code
ECAT_AL_STATUS_CODE_SYNC_MANAGER_WATCHDOG is set and the slave falls back to the SafeOP state. The AP

Chapter 3 Stack structure and stack functions 26 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

task starts to trigger the SM Watchdog with the first reading of the buffer and triggers again with each next reading. It is
reset with every PDO cycle from the master. The EtherCAT Master or a configuration tool can change the watchdog time
by writing the related registers (0x420, 0x400 = devider for both wdgs.) in the EtherCAT Slave. You can add an entry
(OEM customization) in the ESI file, see Reg0420 in [13]. The typical events causing a watchdog timeout are unplugging
the network cable or long cycle times.

3.6.3 PDI Watchdog

The PDI watchdog has a default value of 100ms, value 0 deactivates this watchdog. The EtherCAT Master or a
configuration tool can configure the related registers by writing the related registers (0x410, 0x400 = devider for both
wdgs, 0x110 = status) in the EtherCAT Slave.

3.7 Usage of PHYs

The usage of PHYs is as follows:

■ PHY 0 means in-port.
■ PHY 1 means out-port.

Chapter 3 Stack structure and stack functions 27 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Chapter 4 Status information
The EtherCAT Slave provides status information in the dual-port memory. The status information has a common block
(protocol-independent) and an EtherCAT Slave specific block (extended status).

4.1 Common status

For a description of the common status block, see reference [1].

4.2 Extended status

Offset Type Name Description

0x0050 UINT32 ulNextSync0Time 32-bit time value of the next Sync0 event. The value is updated
every Sync0 interrupt if enabled (see section Sync PDI
configuration parameter).

0x0054 UINT64 ulSMCycleTimeNanoSec 64-bit time value measured between two SM2 interrupts. The
value is updated every SM2 interrupt

Table 11. Extended status block

Chapter 4 Status information 28 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Chapter 5 Requirements to the application

5.1 Sequence within the host application

The next figure shows the sequence within a host application program.

Chapter 5 Requirements to the application 29 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Figure 10. Sequence within the application

Chapter 5 Requirements to the application 30 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

5.2 General initialization sequence

The next figure explains the general initialization sequence. Note, that all needed registration requests are done after the
channel initialization and before the bus is switched on. The only exception is the register application request, which
precedes the configuration and channel initialization.

Figure 11. Initialization sequence with placing of registrations and object dictionary creation

Before the communication is started, the application has to read the IO Channel. This is necessary to be able to reach the

Op state within the EtherCAT protocol stack:
Before the stack accepts switching to Operational state (Op), it needs to have access to the cyclic process data on the
bus, which has been sent from the EtherCAT master to the EtherCAT slave. Therefore, the application needs to read the

Chapter 5 Requirements to the application 31 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

data at minimum once after the master has started to send it (e.g. with XChannelIORead). The master starts sending
process data at the state change from Preop2 to SafeOP. This behavior is not present for input only devices (which only
transfers data from device to bus) or devices that have not configured any output data.

5.3 Explicit Device Identification

This section describes the correct handling for the usage of an Explicit Device Identification (optional)

5.3.1 Initialization sequence

The next figure shows the initialization sequence diagram. Prerequisite for correct operation is a power on or system start.
The PHYs will be disabled after power on or system start.

Figure 12. Initialization sequence for Explicit Device Identification

Remarks: RCX_START_STOP_COMM_REQ can be replaced with BusOn via CommCOS RCX_CHANNEL_INIT_REQ

can be replaced with ChannelInit via CommCOS.
The application has to set the Device Identification Value before the BusOn is to be executed. The Device Identification
Value is handled according to the Explicit Device Identification via ESC registers ALSTATUS / ALSTATUSCODE. For

details on the functionality of those registers within the stack, see [11]

Details concerning the Device Identification Value from Figure 12 are as follows.
The address value which is set on the slave via ID selector (e.g. an address from a rotary switch or a display) is read out by
the master via the so called Requesting ID mechanism. This mechanism needs to be activated in the slave and also needs
to be inactive if the feature is not used. The address value of the switch can be sent to the slave by using the
RCX_SET_FW_PARAMETER_REQ_T packet:

■ The address switch has to be polled by the user application in order to get the address.
■ Setting a value unequal to zero with the parameter usDeviceIdentificationValue ECAT_SET_CONFIG_UID in the

SetConfiguration request activates the address handling by the stack (answering if the master requests the address).
The value zero deactivates the handling.

■ After the address handling is activated, the address switch has to be polled and the actual value has to be given to the
stack to get the correct information before the slave starts to communicate over the network. Therefore, the command
RCX_SET_FW_PARAMETER_REQ has to be sent before BUS_ON. The stack writes the address in register 134. This
mechanism makes sure that the address is set after every cold start of the device.

Chapter 5 Requirements to the application 32 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

■ Additionally, it is necessary to poll the switch frequently while the device is running and send the Command
RCX_SET_FW_PARAMETER_REQ to the stack, when the address has changed. (This is optional since conformance
test version 7000.2 V1.2.6) The stack will not provide the new address to the master until the stack requests it again.

■ If the address handling is switched off, because the device does not support it, the address should not be sent by
RCX_SET_FW_PARAMETER_REQ, because this request with a value unequal to zero also activates the address
handling. (Also, be aware that there is no entry <IdentificationReg134> in the ESI file if the address is not supported.)

■ Setting the address value with the parameter usDeviceIdentificationValue (SetConfiguration request) only without
polling is also possible and can make sense e.g. for mechanical engineering, but it is no longer sufficient for fulfilling
the conformance requirements.

■ Beginning with protocol stack version 4.9, the following legacy behavior according to ETG1020 is supported
concerning simultaneous handling of rotary switch and Configured Station Alias: Only in case both values are set
before Bus on, the rotary switch value is copied to register 12 of the ESC and Configured Station Alias is set to 0. An
emergency error is generated. After going back to state Init, the slave can be brought to state Op again. (See [11] or
ETG’s knowledgebase website, which provides details).

■ Legacy behavior in handling of explicit device IDs according to ETG1020 only applies for cases where both device ID
values are set - the one originating from bus side and the local one. This means: if the rotary switch value is set on
device startup to a value not 0, it obtains priority over the value originating from bus side. However, this only applies if
set on first startup (Figure 12 is obeyed) Please note the difference between the terms Configured Station Alias

(Section 6.2.5) and Explicit Device ID (Section 5.3):

■ Configured Station Alias or Configured Station Address is a 16 Bit value designating a station and can be used by the
master (when activated) to send datagrams to a slave as done with the first station (Node) Address. It is set from
master side and stored in the EEPROM.

■ An Explicit Device ID is a value which is used for identification purpose and never used by the master as address value
for sending datagrams. It can be set in two ways. For instance by means of a rotary switch locally on the device. Or by
setting the Configured Station Alias via bus (means storing it in EEPROM) and doing a powercycle on the device. After
power on the device copies the value to register 0x12 of the ESC. This register can also be used for Explicit Device
Identification purpose. So Explicit Device Identification Value is an overall term and can alternatively use one of the
mechanisms.

NOTE NetX52 based devices need some additional handling on the application to support the legacy
mechanism. Please ask our support for an Application Note.

Chapter 5 Requirements to the application 33 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

5.3.2 Set firmware parameter

With this parameter the packet is used to send an address value to the stack. Send each time the value changes.

Packet parameters

Value Name

Description
0x30009001 PID_ECS_DEVICE_IDENTIFICATION

ulParameterID switch or display address value

Table 12. Set device identification value

ulParameterLength
ulParameterLength = 4.

abParameter

Field Meaning

abParameter[0] Low Byte of Device Identification Value

abParameter[1] High Byte of Device Identification Value

abParameter[2] set to zero

abParameter[3] set to zero

Table 13. abParameter

Packet description

Structure RCX_SET_FW_PARAMETER_REQ_T Type: Request

Variable Type Value/Range Description

structure HIL_PACKET_HEADER_T

ulDest UINT32 Destination queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final receiver of the
packet within the Destination Process. Set to 0 for the Initialization
Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the packet
inside the Source Process

ulLen UINT32 12 Packet data length in bytes

ulId UINT32 0 … 232 -1 Packet Identification as unique number generated by the Source
Process of the Packet

ulSta UINT32 0 Status code of the packet

ulCmd UINT32 0x2F86 RCX_SET_FW_PARAMETER_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

Structure RCX_SET_FW_PARAMETER_REQ_DATA_T

ulParameterID UINT32 0x30009001 PID_ECS_DEVICE_IDENTIFICATION

ulParameterLength UINT32 4 Length of parameter

abParameter UINT8[4] See description of abParameter

Table 14. Request packet RCX_SET_FW_PARAMETER_REQ_T

Confirmation packet
Packet description

Structure RCX_SET_FW_PARAMETER_CNF_T Type: Confirmation

Variable Type Value/Range Description

structure HIL_PACKET_HEADER_T

ulDest UINT32 Destination queue-Handle

Chapter 5 Requirements to the application 34 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Structure RCX_SET_FW_PARAMETER_CNF_T Type: Confirmation

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final receiver of the
packet within the Destination Process. Set to 0 for the Initialization
Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the packet
inside the Source Process

ulLen UINT32 0 Packet data length in bytes

ulId UINT32 0 … 232 -1 Packet Identification as unique number generated by the Source
Process of the Packet

ulSta UINT32 See section Status and Error Codes

ulCmd UINT32 0x2F87 RCX_SET_FW_PARAMETER_CNF - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

Table 15. Confirmation packet RCX_SET_FW_PARAMETER_CNF_T

Example

The following example shows how to set a value as identification value:

void FillOutFwParamDeviceIdentPacket(TLR_UINT32 ulSrc, RCX_SET_FW_PARAMETER_REQ_T* ptPkt, TLR_UINT16 usIdentValue)
{
 ptPkt->tHead.ulCmd = RCX_SET_FW_PARAMETER_REQ;
 ptPkt->tHead.ulExt = 0;
 ptPkt->tHead.ulSta = 0;
 ptPkt->tHead.ulSrcId = 0;
 ptPkt->tHead.ulSrc = ulSrc;
 ptPkt->tHead.ulLen = 12;
 ptPkt->tHead.ulRout = 0;
 ptPkt->tHead.ulId = 0;
 ptPkt->tHead.ulDestId = 0;
 ptPkt->tHead.ulDest = 0x20; /* addressed communication channel */
 ptPkt->tData.ulParameterID = PID_ECS_DEVICE_IDENTIFICATION;
 ptPkt->tData.ulParameterLength = 4;
 ptPkt->tData.abParameter[0] = usIdentValue & 0xFF;
 ptPkt->tData.abParameter[1] = usIdentValue >> 8;
 ptPkt->tData.abParameter[2] = 0;
 ptPkt->tData.abParameter[3] = 0;
}

5.3.2.1 No implementation for netX devices with rotary switches

For netX devices with natively implemented rotary switches such as the COMX51CA-RE\R, no implementation must be
done and also no implementation is allowed. This means: Sending RCX_SET_FW_PARAMETER_REQ with
ulParameterID = PID_ECS_DEVICE_IDENTIFICATION is forbidden!

For Set Configuration Packet:

■ The Component ECAT_SET_CONFIG_UID_T parameter usDeviceindentificationValue is ignored (overwritten) by the
firmware.

■ The ECAT_SET_CONFIG_UID_T parameter usStationAlias (which is not allowed for devices that need a certification)
is overwritten when rotary switch value is unequal to 0, which means activation. So the usStationAlias parameter
should not be used if it cannot be ensured that the switches are set to zero (legacy handling applies, see ETG
knowledgebase for more Information).

5.3.3 Required entry in ESI file for Explicit Device Identification

Beginning with EtherCAT Slave protocol stack version 4.9 supports the Legacy Mode Mechanism. If the Explicit Device
ID is set at the device via an ID selector (not set by the Master), the ESI file has to be adapted to support the Legacy Mode
Mechanism. For instance, you have to do this when using the rotary switches or a display for address setting.To adapt the
ESI file, add the following entry there:

Chapter 5 Requirements to the application 35 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

 <Info>
 <IdentificationAdo>#x12</IdentificationAdo>
 <IdentificationReg134>1</IdentificationReg134>
 </Info>

5.4 Complete Access for object data held by application

This section describes the sequence of packets for the use case "object dictionary holds object and subobjects
descriptions, application holds data" for a Complete Access. For a description of the use case, see reference [4]. This
section is not for the use case dynamic PDO mapping, therefore see Section 5.5. The ODV3 task translates SDO up- and
downloads with Complete Access from an EtherCAT Master into single accesses to the application. The main difference
of the Complete Access compared to the standard access is the order when the object validation indications are sent:
with Complete Access, the validation indications are implicit. If a Complete Access request from EtherCAT Master fails,
the application has to restore the former object values. The following example shows how to handle the packets for a
write object request correctly to support both single access and Complete Access.

Figure 13. SDO download with Complete Access (successful)

The application has to save new values using a copy of the values in order to be able to restore the former value of the
objects in case of an error. After the application has received the validation of the last written subindex, the application
has to take over the (new) values of successful answered values only. In the case of an abort of the Complete Access
request, the ODV3 task will send all validation indications with fSuccessful set to False. The example shows that the
application answers the write indication on subindex 2 with the error code
TLR_E_CO_OBJDICT_UNSUPPORTED_ACCESS. This does not lead to an error for the Complete Access download
request itself. The value of the subindex just remains unchanged. In the case, all subindexes report an error, the complete
access will fail. Also in case subindex zero of an object is read only and the master or configuration tool tries to write more

Chapter 5 Requirements to the application 36 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

subindexes as subindex zero of this object contains, causes for example a failure of the Complete Access request.

5.5 Dynamic PDO mapping

Dynamic PDO mapping means that the process data configuration of the EtherCAT Slave device can be changed via
EtherCAT. The EtherCAT Master or a configuration tool can use * PDO assignment (Sync Manager objects e.g.
0x1C12/0x1C13), or * PDO configuration (e.g. 0x1600/0x1A00) or both in order to dynamically change the PDO mapping.
A common use case for dynamic PDO mapping are modular devices. As a result of the required functionality for the
complete device, the user application will be more complex if the user application has to support both PDO assignment
and PDO configuration. This section describes how the application has to support the dynamic PDO mapping

functionality and which sequences of packets occur.
The following figures show the handling for PDO assignment. Please observe the sequence of packets and make sure that
the Set IO Size request reaches the slave stack before the process data length evaluation takes place. The sequence of
writing the assignment objects 0x1C12 and 0x1C13 may differ from configuration tool to configuration tool because the
sequence is not defined. For details on the download order, see [14].

For the dynamic PDO mapping, the user application has to response on multiple indications of the
ODV3_WRITE_OBJECT service from the EtherCAT Slave stack. As soon as the user application receives "Writing
subindex 0 with the value of the highest subindex", the end of the dynamic mapping for each PDO is indicated. The user
application will receive only one ODV3_WRITE_OBJECT_IND if no process data for a direction has been configured.

NOTE The EtherCAT Slave stack sends the ODV3_WRITE_OBJECT_VALIATION_COMPLETE packet only if
the application has registered to get this indication for the particular object or in case Complete Access
is used.

For more information about the dynamic PDO mapping, see chapter 10 in [11] and [14]. The following subsections show
some usecases.

Chapter 5 Requirements to the application 37 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

5.5.1 One application registered (application successful)

Figure 14. Dynamic PDO assignment: One application registered for write indications (successful)

Chapter 5 Requirements to the application 38 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

The user application has to create two lists. One list contains the current configuration and the other list contains a copy
(shadow list) of the original configuration in order to save the new configuration. As soon as subindex 0 is set to zero, the
user application has to copy the current configuration into the shadow list. Only at the end of correct configuration
sequence, the user application can copy the shadow list back to the current configuration list. In case of error which
means that at least one 'ODV3_WRITE_OBJECT_CNF with ulSta unequal to 0' occurs, the current configuration list stays

valid and the process data length can be restored.
As soon as the application receives 'ODV3_WRITE_OBJECT_IND with subindex 0 has value zero', the application has to
send the first ECAT_DPM_SET_IO_SIZE_REQ of the sequence to the EtherCAT Slave. The
ECAT_DPM_SET_IO_SIZE_REQ contains the length of input and the length of output. The length for the current written
I/O direction gets value 0, the length for the other direction gets the current value. After the application has received the
confirmation ECAT_DPM_SET_IO_SIZE_CNF , the application has to send the response ODV3_WRITE_OBJECT_RES
for subindex 0. The application has to send the ECAT_DPM_SET_IO_SIZE_REQ at the beginning, because of the
possibility that no more ODV3_WRITE_OBJECT_REQ from master follow in case the configured data size is zero. In case,
the device has additionally fix configured process data in the specific direction (which is not downloaded by the
configuration tool), this first ECAT_DPM_SET_IO_SIZE_REQ with value zero should not be send or instead send with the
length of the fix process data. The ODV3_WRITE_OBJECT_VALIDATION_COMPLETE_IND packets have no effect

because there is no other application registered.
The application receives values for the subindexes within the write indication. If the object is deactivated (subindex 0 is
zero which means "writing allowed") the application has to save the new value in the shadow list. If not, the application
has to compare the current value with the new value. If they match, this is an allowed request otherwise this is an
unallowed access (0x06010003 = Subindex cannot be written, SI0 must be 0 for write access). This behaviour allows a

master to check the configuration.
The end of object writing is indicated by 'ODV3_WRITE_OBJECT_IND sets subindex 0 to a value unequal to zero'. The
application has to calculate the process data length and send the ECAT_DPM_SET_IO_SIZE_REQ to the EtherCAT
slave. This request has to contain the length of input and the length of output and one length of both has a new value. As
soon as the application has received the ECAT_DPM_SET_IO_SIZE_CNF, the application has to send the

ODV3_WRITE_OBJECT_RES for subindex 0.
Only this sequence ensures that the EtherCAT Slave stack uses the new data size for the next process data evaluation
which takes place before changing the operating mode to Safe-Operational.

5.5.2 One application registered (application not successful)

Chapter 5 Requirements to the application 39 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Figure 15. Dynamic PDO assignment: One application registered for write indications (not successful)

Until the first confirmation ODV3_WRITE_OBJECT_CNF for subindex 0, the sequence is the same as described in
section Figure 14. If one of the following _ODV3_WRITE_OBJECT_IND fails, indicated by 'ulSta unequal to zero' from the
application, the application has to restore the former I/O size or has to set a default size. An example for this case can be
that a written value is out of range.

5.5.3 Multiple applications registered (one application not successful)

In case of multiple applications are registered, the application has to check the
ODV3_WRITE_OBJECT_VALIDATION_COMPLETE_IND packets. If at least one other registered application answers on
a ODV3_WRITE_OBJECT_IND packet with an ulSta unequal to zero, all applications will get the
ODV3_WRITE_OBJECT_VALIDATION_COMPLETE_IND packet with the respected error code. In this case, the
application has to restore the former I/O size or has to set a default size as Figure 15 shows.

5.5.4 One application registered Complete Access: (application successful)

Chapter 5 Requirements to the application 40 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Figure 16. Dynamic PDO assignment with Complete Access: One application registered for write indications (successful)

The ODV3 task splits a single Complete Access from master into several requests. To get the subindexes in the correct
order for PDO mapping, the application has to to set the flag ODV3_ACCESS_FLAGS_SUBINDEX_0_WRITE_0_FIRST
during object creation. The application also has to set the flag ODV3_INDICATION_FLAGS_ON_WRITE_INVALIDATED,
see [4].

The application has to copy the current configuration list with all its values to a second list (shadow list). In the shadow
list, the application saves the new configured data. At the end of a correct configuration sequence, the application copies
the valid subobjects of the new configuration back to the current configuration list. In Case, the Complete Access fails
(ODV3_WRITE_OBJECT_CNF ulSta is not zero), the configuration of the current list is still valid and process data length
can be restored or is unchanged.

The sequence starts with setting subindex 0 to zero. In comparison to single access, the application does not need to
send a ECAT_DPM_SET_IO_SIZE_REQ packet, because Set IO Size follows after the validation indication. The
application receives values for the subindexes with the following write indications. In case the object is deactivated
(subindex 0 = zero and writing is allowed), the application has to save the new values to the shadow list. If not, the
application has to compare the current value with the new value. If they match, this is an allowed request otherwise this is
an unallowed access (0x06010003 = Subindex cannot be written, SI0 must be 0 for write access). The indication for
subindex zero unequal to zero is checked to match highest written subindex.

Chapter 5 Requirements to the application 41 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

All validation indications which are following show whether the written value is valid or whether an error has occurred.
The validation for subindex 0 indicates the end of the configuration for the application. In case the validation is successful,
the application has to copy the valid entries to the current configuration list. The application has to calculate the process
data length and send the Set IO Size request to the EtherCAT Slave which contains the length of input and the length of
output. One length has a new value.

Additional considerations
The main difference of the Complete Access compared to the standard access is that all write object validation packets
are send after the last write object response that has reached the ODV3 task. The amount of validation packets coming
straight after the last write object response can be very high. As a result, the application has to take the following points

into account:
* For LFW users: The application has to empty the mailbox frequently because otherwise the buffers in the packet que for
the mailbox runs out of packets. Depending on the amount of validation packets, it may necessary for the application to
poll the mailbox with a higher frequence while the startup parameters are downloaded. Afterwards the application can
decrease the frequence for a standard acyclic packet handling. * The master tries to change the EtherCAT state right after
the download of the last startup parameter has been finished. Which means after the last write object confirmation
reaches the master. The state change request leads to a process data validation in the slave. To avoid that the process
data evaluation is done before the new data size is set, the validation responses from application side can be neglected
(they are not evaluated by the ECS stack). If problems occur, it is also possible to define a timeout for the state changes in
the ESI file.

5.6 Protocol-specific aspects to regard for ODV3 API when using the EtherCAT Slave stack

5.6.1 ODV3 access mask and flags

If the objects are administered by the application itself (“undefined mechanism”) and the object list is also returned by the
application, you have to take care of the ODV3 usObjAccessMask / usObjAccessCompare at the ODV3 List request.
Objects in datatype area, which means objects less than 0x1000, are marked by the flag
ODV3_ACCESS_FLAGS_IS_DATATYPE_AREA.

5.6.2 Free memory available for ODV3 objects can decrease after firmware update

Usually, a firmware update requires an increased amount of resources to be reserved for the firmware. Consequently, the
resources available for your application might decrease after a firmware update. This also applies for the memory required

by the EtherCAT stack to store ODV3 objects.
If the amount of memory for ODV3 objects your application uses is very close to the upper limit, the application might not
work anymore after a firmware update and an error message such as "Out of Memory" might be issued. In this case, the
amount of objects that can be held by the ODV3 component of the EtherCAT stack can be reduced. For example, if a new
component is added to the firmware like a TCP stack. So, it is not guaranteed that the object dictionary will still fit on the
netX after firmware update. Especially on netx52 targets, the amount of free memory is very small. A solution for this
problem is to use the undefined mechanism when creating objects, see [4] for details.

Chapter 5 Requirements to the application 42 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Chapter 6 Application interface
The following chapters define the application interface of the EtherCAT Slave stack. The application itself has to be
developed as a task according to the Hilscher’s Task Layer Reference Model. In the following, the application task is
named AP task.

The AP task’s process queue is keeping track of all its incoming packets. It provides the communication channel for the
underlying EtherCAT Slave Stack. Once, the EtherCAT Slave Stack communication is established, events received by the
stack are mapped to packets that are sent to the AP task’s process queue. On the one hand, every packet has to be
evaluated in the AP task’s context and corresponding actions be executed. On the other hand, Initiator-Services that are
be requested by the AP task itself are sent via predefined queue macros to the underlying EtherCAT Stack queues via
packets as well.

All tasks belonging to the EtherCAT stack are grouped together according to their functionality they provide. The
following overview shows the different tasks that are available within the EtherCAT stack.

EtherCAT component Task Description

Base component ECAT_ESM task This task provides the EtherCAT state machine and controls all related tasks.

ECAT_MBX task This task provides the mailbox of an EtherCAT slave.

CoE component ECAT_COE task This task splits the CoE messages according to their rule in the CANopen over
EtherCAT.

ECAT_SDO task This task handles all SDO-based communications inside the EtherCAT CoE
component.

ODV3 task This task performs all accesses to the object dictionary (such as reading, writing,
creating, deleting and maintaining objects). Its packet interface is described in
[4]

EoE component ECAT_EOE task This task handles the Ethernet over EtherCAT.

FoE component ECAT_FOE task This task handles the File Access over EtherCAT.

Table 16. EtherCAT Slave stack components

The EtherCAT Slave Stack consists of several tasks dealing with certain aspects of the EtherCAT mailbox messages and
cyclic communication. These can be accessed using the following queue names:

ASCII Queue Name Description

'ECAT_ESM_QUE' ECAT_ESM task queue name
ECAT_ESM task handles all ESM states and AL control Events

'ECAT_COE_QUE' ECAT_COE task queue name
sending of CoE message will go through this queue

'ECAT_SDO_QUE' ECAT_SDO task queue name
ECAT_SDO task handles all SDO communications of the CoE Stack part

'ECAT_FOE_QUE' ECAT_FOE task queue name
ECAT_FOE task handles all File Access over EtherCAT communications

'ECAT_EOE_QUE' ECAT_EOE task queue name
ECAT_EOE task handles all EOE communications

Table 17. Summary of all queue names, which may be used by an AP task

The packets, which can be sent to those queues, will be detailed in the particular chapters. Furthermore, there is an
ECAT_DPM task, which is not associated with a queue as it is only necessary for direct access to the DPM.

Chapter 6 Application interface 43 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

6.1 General

Service Command Command Code

Register application service RCX_REGISTER_APP_REQ 0x2F10

RCX_REGISTER_APP_CNF 0x2F11

Unregister application service RCX_UNREGISTER_APP_REQ 0x2F12

RCX_UNREGISTER_APP_CNF 0x2F13

Set ready service ECAT_ESM_SETREADY_REQ 0x1980

ECAT_ESM_SETREADY_CNF 0x1981

Initialization complete service ECAT_ESM_INIT_COMPLETE_IND 0x198E

ECAT_ESM_INIT_COMPLETE_RES 0x198F

Link status changed indication RCX_LINK_STATUS_CHANGE_IND 0x198E

RCX_LINK_STATUS_CHANGE_RES 0x198F

Table 18. Overview over the general packets of the EtherCAT Slave stack

6.1.1 Register application service

This service is described in DPM Interface Manual for netX based Products, see [1]. After registration, the stack will
generate an initial AL status changed indication. When an application has been registered for indications with
RCX_REGISTER_APP_REQ, the EtherCAT Slave stack may produce the following indications:

■ AL status changed indication (ECAT_ESM_ALSTATUS_CHANGED_IND)
■ Link status changed indication (RCX_LINK_STATUS_CHANGE_IND)
■ Initialization complete indication (occurs only in context of linkable object modules)

Other indications of the EtherCAT Slave Stack will only be sent by the stack if an application has registered itself for that
indication. This service is only informative, while the Register for AL control changed indications service goes beyond.

NOTE It is required that the application returns all indications it receives as valid responses to the stack. It is
not allowed to change any field in the packet header except ulSta, ulCmd and ulLen. Otherwise the
stack will not be able to assign the response successfully.

6.1.2 Unregister application service

Using this service the application can unregister with the EtherCAT Slave stack: the stack will no longer generate
indications. The service is described in DPM Interface Manual for netX based Products, see [1].

6.1.3 Set ready service

This service is used to notify the ECAT_ESM task of initialization completion of up to 32 tasks each represented by one
bit of variable ulReadyBits. The lower 20 bits are reserved for the EtherCAT task and cannot be used by any application.
The upper 12 bits are free to be used by the application. The ECAT_ESM task will wait for all required ready bits. It will not
enable any state changes before all bits have been set.

NOTE This service can only be used in the context of linkable object. It is also necessary to register the
application with Register application service if the application shall receive the corresponding
Initialization complete indication. At least one bit of variable ulReadyBits must be set.

Chapter 6 Application interface 44 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Figure 17. Set ready service request

As application 2 has not registered for indications (via RCX_REGISTER_APP_REQ) only application 1 receives the
Initialization Complete Indication. The following ready waits bits are defined:

Value Name

Description
0xfff00000 ECAT_READYWAIT_APPLICATION_MASK

ready wait bits

0x000fffff ECAT_READYWAIT_STACK_MASK

0x00008000 ECAT_READYWAIT_CYCLIC_DPM

0x00100000 ECAT_READYWAIT_APP_TASK_1

0x00200000 ECAT_READYWAIT_APP_TASK_2

0x00400000 ECAT_READYWAIT_APP_TASK_3

0x00800000 ECAT_READYWAIT_APP_TASK_4

0x01000000 ECAT_READYWAIT_APP_TASK_5

0x02000000 ECAT_READYWAIT_APP_TASK_6

0x04000000 ECAT_READYWAIT_APP_TASK_7

0x08000000 ECAT_READYWAIT_APP_TASK_8

0x10000000 ECAT_READYWAIT_APP_TASK_9

0x20000000 ECAT_READYWAIT_APP_TASK_10

0x40000000 ECAT_READYWAIT_APP_TASK_11

0x80000000 ECAT_READYWAIT_APP_TASK_12

Table 19. Bitmask ulReadyBits of ECAT_ESM_SETREADY_REQ_DATA_T

Chapter 6 Application interface 45 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

As seen above up to 12 application tasks can set a ready bit. Notice that ECAT_READYWAIT_CYCLIC_DPM is used by
the stack. The 'stack area' of the 32 ready waits bits covers the lower 20 bits, the 'application area' covers the upper 12

bits.

6.1.3.1 Set ready request packet

This request has to be sent from the application to the stack in order to cause the stack to wait until the ready bit of a task
of the application has been set. As long as the ready bit has not been set, no state change of the stack happens.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 4

ulSta uint32_t 0

ulCmd uint32_t 0x1980

tData ECAT_ESM_SETREADY_REQ_DATA_T

ulReadyBits uint32_t see Bitmask ulReadyBits

Table 20. ECAT_ESM_SETREADY_REQ_T

6.1.3.2 Set ready confirmation packet

This confirmation will be sent from the stack to the application every time it receives a ECAT_ESM_SETREADY_REQ
packet.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1981

Table 21. ECAT_ESM_SETREADY_CNF_T

6.1.4 Initialization complete service

This service indicates the completion of the initialization. It is used together with the Set ready service.

NOTE This service can only be used in the context of linkable object. It is also necessary to register the
application with Register application service in order to receive an Initialization complete indication. At
least one bit of variable ulReadyBits must be set.

6.1.4.1 Init complete indication packet

This indication will be sent from the stack to the application when all bits which should be set in ready wait bits are set.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x198E

Table 22. ECAT_ESM_INIT_COMPLETE_IND_T

6.1.4.2 Init complete response packet

Variable Type Description

tHead HIL_PACKET_HEADER_T

Chapter 6 Application interface 46 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x198F

Table 23. ECAT_ESM_INIT_COMPLETE_RES_T

6.1.5 Link status changed service

This service indicates a link status change for a specific port e.g. cable plugged/unplugged in an Ethernet port. The stack
polls the port status cyclically to generate the messages. This request is available from firmware/stack V4.4.0.2.

NOTE It is necessary to register the application with Register application service in order to receive a link
status changed indication.

6.1.5.1 Link status changed indication

This indication will be sent from the stack to every registered application.

6.1.5.2 Link status changed response

The application has to send this response to the stack after receiving the link status changed indication.

Chapter 6 Application interface 47 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

6.2 Configuration

Service Command Command Code

Set configuration service ECAT_SET_CONFIG_REQ 0x2CCE

ECAT_SET_CONFIG_CNF 0x2CCF

Set handshake configuration service RCX_SET_HANDSHAKE_CONFIG_REQ 0x2F34

RCX_SET_HANDSHAKE_CONFIG_CNF 0x2F35

Set IO Size service ECAT_DPM_SET_IO_SIZE_REQ_T 0x2CC0

ECAT_DPM_SET_IO_SIZE_CNF_T 0x2CC1

Set Station Alias service ECAT_DPM_SET_STATION_ALIAS_REQ 0x2CC6

ECAT_DPM_SET_STATION_ALIAS_CNF 0x2CC7

Get Station Alias service ECAT_DPM_GET_STATION_ALIAS_REQ 0x2CC8

ECAT_DPM_GET_STATION_ALIAS_CNF 0x2CC9

Table 24. Configuration packets overview

6.2.1 Set configuration service

The application has to use the set configuration service to configure the stack on startup.

NOTE As described in Dual-Port memory manual [1], it is required to send a channel initialization request to the
EtherCAT Slave stack after the set configuration request is performed. The stack will not use the
configuration until the channel initialization request is received.

For detailed information on the packet sequence, see Section 2.2.
If this message has not been sent to the stack, the slave will not proceed further than to Pre-Operational state. If the
master requests Safe-Operational, the slave will notify the master with the following code in the AL status
code:_ECAT_AL_STATUS_CODE_IO_DATA_SIZE_NOT_CONFIGURED_ (0x8001). For a list of available AL status
codes please refer to the EcsV4_Public.h file.

Static PDO mapping vs. dynamic PDO mapping

This configuration service fully appropriate only for static PDO mapping. In case of dynamic PDO mapping, the
application must send additionally a [_set_io_size_request] packet each time the input or output length has changed.

6.2.1.1 Set config request packet

The application has to send this request to the protocol stack in order to configure the stack with configuration
parameters. The following applies: Configuration parameters will be stored internally in RAM. (In case of any error no data
will be stored at all.) A channel initialization request is required to activate the configuration parameters.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t size of tData

ulSta uint32_t 0

ulCmd uint32_t 0x2CCE

tData ECAT_SET_CONFIG_REQ_DATA_T

tBasicCfg
ECAT_SET_CONFIG_
REQ_DATA_BASIC_T

ECAT_SET_CONFIG_REQ_DATA_BASIC_T

tComponentsCfg
ECAT_SET_CONFIG_
REQ_DATA_COMPO
NENTS_T

ECAT_SET_CONFIG_REQ_DATA_COMPONENTS_T

Table 25. ECAT_SET_CONFIG_REQ_T

The structures of the data part of the request ECAT_SET_CONFIG_REQ_DATA_BASIC_T and
ECAT_SET_CONFIG_REQ_DATA_COMPONENTS_T of the data part and the possible defines are described in the
following two separate subsections to keep it clear.

Chapter 6 Application interface 48 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

6.2.1.2 Basic configuration data structure

Variable Type Value/Range Description

ulSystemFlags UINT32 0, 1 Behavior at system start:

0 = automatic (default)

1 = application controlled
For a description, see below this table.

ulWatchdogTime UINT32 0, 20 – 65535 DPM Watchdog time in ms:

0 = off, default: 1000
Time for the application program for retriggering the EtherCAT
slave watchdog. A value of 0 indicates that the watchdog timer is
switched off. The watchdog will only be active after first triggering.

ulVendorId UINT32 0 … 232 -1 Vendor ID
Vendor IDentification number of the manufacturer of an EtherCAT

device.
Default: 0xE0000044 denoting device has been manufactured by
Hilscher Vendor id, product code, and revision number for
Hilscher, see Table 28

ulProductCode UINT32 0 … 232 -1 Product code
Product code of the device. Default: 0x00020004

ulRevisionNumber UINT32 0 … 232 -1 Revision number
Revision number of the device as specified by the manufacturer.

ulSerialNumber UINT32 0 … 232 -1 Serial number

Serial number of the device. Default: 0
Value 0 forces the stack to read the serial number from the
security memory or Flash device label in the device. If security
memory or Flash device label is present but can’t be accessed
correctly, value 0 is used.

ulProcessDataOutput
Size

UINT32 netX 100/5001):

0…512 –

ulProcessDataInputSize

netX 50/51/522):+ 0…1024

Process data output size (in bytes)

Default: 4 Byte
netX100/500 only: The sum of input and output data is limited to
512 Bytes*.

ulProcessDataInput Size UINT32 netX 100/5001):

0…512 –

ulProcessDataOutputSize

netX 50/51/521):+ 0…1024

Process data input size (in bytes)

Default: 4 Byte
netX100/500 only: The sum of input and output data is limited to
512 Bytes*.

ulComponent Initialization UINT32 Bit mask Component initialization bit mask, enables or disables certain
components of the EtherCAT Slave stack. For a list, see below.

ulExtensionNumber UINT32 0 … 232 -1 Currently not used
Number which identifies an additional configuration structure
default: 0.

1) netX 100/500: The sum of roundup(input data length) and roundup(output data length) may not exceed 512 Bytes (where roundup()
means round up to the next multiple of 4. If either the input data length or the output data length exceeds 256 Bytes, the device
description file delivered with the device requires modifications in order to work properly, also ECAT_SET_CONFIG_SMLENGTH has

to be set.
1)netX 50/51/52: The sum of input data length and output data length may not exceed 2048 Bytes and 1024 in each direction.

Table 26. Basic configuration data ECAT_SET_CONFIG_REQ_DATA_BASIC_T

Starting with version 4.6.0 the EtherCAT Slave stack supports simultaneous setting of input and output data length to 0.
The use case for is for example modular devices: Set both input and output length to 0 and use the Set IO Size service to
set the calculated input and output data length.

Parameter ulSystemFlags

The start of the device can be performed either application controlled or automatically. The following flags are defined:

Chapter 6 Application interface 49 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Value Name

Description
0x00000000 ECAT_SET_CONFIG_SYSTEMFLAGS_AUTOSTART

Network connections are opened automatically without taking care of the state of the host application. Communication
with an EtherCAT master after starting the EtherCAT Slave is allowed without BUS_ON flag, but the communication will
be stopped if the BUS_ON flag changes state to 0.

0x00000001 ECAT_SET_CONFIG_SYSTEMFLAGS_APP_CONTROLLED

The channel firmware is forced to wait for the host application Application to wait for the BUS_ON flag in the
communication change of state register. For further information, see [1]. Communication with EtherCAT Master is
allowed only with the BUS_ON flag

Table 27. Flags for ulSystemFlags

Automatic

IMPORTANT If the master sets the slave to Operational state when Automatic has been choosen, probably the
application will not be initialized completely.

Application controlled

IMPORTANT If the initialization of the slave application is to be controlled by the slave application itself, Application
controlled must be chosen. The master is only able to change the state of the slave in case of the slave
application setting the BUS_ON flag.

IMPORTANT If Application controlled (1) is chosen and a watchdog error occurs, the stack will not be able to reach
the Operational or the Safe-Operational state. In this case, a channel reset is required.

For more information concerning the bus startup parameter, see section Controlled or Automatic Start in [1].

Parameter ulVendorId, ulProductCode and ulRevisionNumber

The values for the parameters ulVendorId, ulProductCode and ulRevisionNumber can be taken from the XML file, which is
bundled with the particular firmware. The following default value sets for the identification data has been defined:

Firmware Vendor ID Product code Actual revision number

cifX 0xE0000044 0x00000001 0x00060004

comX100 0xE0000044 0x00000003 0x00060004

comX51 0xE0000044 0x0000002B 0x00060004

comX51 Rotary 0xE0000044 0x00000041 0x00060004

netIC50 0xE0000044 0x0000000B 0x00020004

netIC52 0xE0000044 0x00000033 0x00020004

netJACK51 0xE0000044 0x0000002C 0x00060004

netJACK100 0xE0000044 0x00000022 0x00060004

netRapid51 0xE0000044 0x0000003A 0x00060004

netRapid52 0xE0000044 0x00000030 0x00060004

NXIO50 0xE0000044 0x0000000F 0x00060004

NXIO100 0xE0000044 0x00000002 0x00060004

netX100 0xE0000044 0x0000000C 0x00060004

netX500 0xE0000044 0x00000009 0x00060004

netX50 0xE0000044 0x0000000A 0x00060004

netX51 0xE0000044 0x00000028 0x00060004

netX52 0xE0000044 0x0000002E 0x00060004

Table 28. Values for the parameters ulVendorId, ulProductCode and ulRevisionNumber

Parameter ulComponentInitialization

The value ulComponentInitialization is used to enable or disable certain component parameter evaluation of the EtherCAT
Slave stack. If a bit is set, the related data structure is evaluated in the EtherCAT slave stack.

The following flags are defined for ulComponentInitialization:

Chapter 6 Application interface 50 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

#define ECAT_SET_CONFIG_COE 0x00000001
#define ECAT_SET_CONFIG_EOE 0x00000002
#define ECAT_SET_CONFIG_FOE 0x00000004
#define ECAT_SET_CONFIG_SOE 0x00000008
#define ECAT_SET_CONFIG_SYNCMODES 0x00000010
#define ECAT_SET_CONFIG_SYNCPDI 0x00000020
#define ECAT_SET_CONFIG_UID 0x00000040
#define ECAT_SET_CONFIG_AOE 0x00000080
#define ECAT_SET_CONFIG_BOOTMBX 0x00000100
#define ECAT_SET_CONFIG_DEVICEINFO 0x00000200
#define ECAT_SET_CONFIG_SMLENGTH 0x00000400
/* 0x00000800--0x00004000 in use by ECSv5 */

The flags have the following meaning:

Bit Description

0 CoE parameter evaluation

0 - disabled
1 - enabled

1 EoE parameter evaluation

0 - disabled
1 - enabled

2 FoE parameter evaluation (component activated by default in most targets)

0 - disabled
1 - enabled

3 SoE parameter evaluation

0 - disabled
1 - enabled

4 Synchronization modes parameter evaluation

0 - disabled
1 - enabled

5 Sync PDI parameter evaluation

0 - disabled
1 - enabled

6 Unique identification parameter evaluation

0 - disabled
1 - enabled

7 AoE parameter evaluation

0 - disabled
1 - enabled

8 Bootstrap Mailbox parameter evaluation

0 - disabled
1 - enabled

9 Device Info parameter evaluation

0 - disabled
1 - enabled

10 Sm Length parameter evaluation

0 - disabled
1 - enabled

11 -31 Reserved

Table 29. Parameter ulComponentInitialization

6.2.1.3 Components configuration data structure

Chapter 6 Application interface 51 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type

Description
tCoECfg ECAT_SET_CONFIG_COE_T

CoE configuration parameters

tEoECfg ECAT_SET_CONFIG_EOE_T

EoE configuration parameters

tFoECfg ECAT_SET_CONFIG_FOE_T

FoE configuration parameters

tSoECfg ECAT_SET_CONFIG_SOE_T

SoE configuration parameters

tSyncModesCfg ECAT_SET_CONFIG_SYNCMODES_T

Sync modes configuration parameters

tSyncPdiCfg ECAT_SET_CONFIG_SYNCPDI_T

Sync PDI configuration parameters

tUidCfg ECAT_SET_CONFIG_UID_T

Unique identification configuration parameters

tBootMxbCfg ECAT_SET_CONFIG_BOOTMBX_T

Bootmailbox configuration parameter

tDeviceInfoCfg ECAT_SET_CONFIG_DEVICEINFO_T

Device info configuration parameter

tSmLengthCfg ECAT_SET_CONFIG_SMLENGTH_T

Syncmanager configuration parameter

Table 30. ECAT_SET_CONFIG_REQ_DATA_COMPONENTS_T

AoE configuration parameter

The AoE component, does not have a configuration parameter.

CoE configuration parameter

Variable Type

Description
bCoeFlags uint8_t

Flags for CoE configuration

bCoeDetails uint8_t

CoE details refer to value 'CoE details' of category 'General' in the SII)

ulOdIndicationTimeout uint32_t

Timeout for object dictionary indications in milliseconds

ulDeviceType uint32_t

Device type in object 0x1000 of object dictionary

usReserved uint16_t

Table 31. ECAT_SET_CONFIG_COE_T

The following flags for CoE configuration are defined:

6.2.1.4 Object dictionary creation mode:

0 - Object dictionary shall be created with default objects +
1 - Object dictionary shall not be created with default objects, only minimal object dictionary (contains objects 0x1000 and
0x1018) is created, the user has to provide objects

ECAT_SET_CONFIG_COEFLAGS_USE_CUSTOM_OD 0x01

Chapter 6 Application interface 52 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Value Name

Description
0x01 ECAT_SET_CONFIG_COEDETAILS_ENABLE_SDO

Enable SDO

0x02 ECAT_SET_CONFIG_COEDETAILS_ENABLE_SDOINFO

Enable SDO information

0x04 ECAT_SET_CONFIG_COEDETAILS_ENABLE_PDOASSIGN

Enable PDO assign

0x08 ECAT_SET_CONFIG_COEDETAILS_ENABLE_PDOCONFIGURATION

Enable PDO configuration

0x10 ECAT_SET_CONFIG_COEDETAILS_ENABLE_UPLOAD

EEnable PDO upload at startup

0x20 ECAT_SET_CONFIG_COEDETAILS_ENABLE_SDOCOMPLETEACCESS

Enable SDO complete access

Table 32. Flag for bCoeDetails

The flags for CoE details refer to the value “CoE details“ of the category “General” in the SII [15]. They will be directly
copied from the configuration request packet to the SII. If the CoE component of the stack is not configured by user given
parameters (ECAT_SET_CONFIG_COE not used) the following default value applies:

■ Enable SDO
■ Enable SDO Information
■ Enable PDO upload at startup
■ Enable SDO complete access

EoE configuration parameter

Variable Type

Description
ulReserved uint32_t

Table 33. ECAT_SET_CONFIG_EOE_T

FoE configuration parameter

The FoE component is activated by default to allow firmware updates, even if it is not set here. Set it here to match the
entry in the ESi file or adapt the ESI file. This might influence the opportunities in some masters, but will not deactivate the
functionality in the slave. To have control over the downloads (e.g. deny), use the components options. The FoE
configuration data structure contains the following parameter:

Variable Type

Description
ul
Timeout

uint32_t

FoE timeout in milliseconds has to be unequal to 0 (default: 1000)

Table 34. ECAT_SET_CONFIG_FOE_T

NOTE For all targets supporting a file system, FoE is activated by default. For targets with no file system, e.g.
CIFX targets, FoE is deactivated by default.

SoE configuration parameter

Chapter 6 Application interface 53 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type

Description
ulIdnIndicationTimeout uint32_t

Timeout currently not supported

Table 35. ECAT_SET_CONFIG_SOE_T

NOTE CoE and SoE cannot be used at the same time!

Sync modes configuration parameter

Variable Type

Description
bPDInHskMode uint8_t

Input process data handshake mode: only Buffered Host Controlled supported

bPDInSource uint8_t

Input process data trigger source (which triggers the input handshake cell) For values and modes, see Flag for

bSyncSource.

usPDInErrorTh uint16_t

Threshold for input process data handshake handling errors Note: this is the error threshold of the EtherCAT
sync manager for the (master) outputs (usually SM2)

bPDOutHskMode uint8_t

Output process data handshake mode: only Buffered Host Controlled supported

bPDOutSource uint8_t

utput process data trigger source (which triggers the output handshake cell) For values and modes, see Flag for

bSyncSource.

usPDOutErrorTh uint16_t

Threshold for output process data handshake handling errors Note: this is the error threshold of the EtherCAT

sync manager for the (master) inputs (usually SM3)

bSyncHskMode uint8_t

Synchronization handshake mode: only Device Controlled mode supported

bSyncSource uint8_t

Synchronization source for the special sync handshake cell (may be used for an additional sync decoupled from
process data) For values and modes, see Flag for bSyncSource

usSyncErrorTh uint16_t

Threshold for synchronization handshake handling errors

Table 36. ECAT_SET_CONFIG_SYNCMODES_T

The following flags are defined:

Value Name

Description
0x00 ECAT_DPM_SYNC_SOURCE_FREERUN

no synchronization in use

0x02 ECAT_DPM_SYNC_SOURCE_SYNC0

SYNC0 signal used as synchronization trigger

0x03 ECAT_DPM_SYNC_SOURCE_SYNC1

SYNC1 signal used as synchronization trigger

0x22 ECAT_DPM_SYNC_SOURCE_SM2

SM2 used as synchronization trigger

0x23 ECAT_DPM_SYNC_SOURCE_SM3

SM3 used as synchronization trigger

Chapter 6 Application interface 54 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Table 37. Flag for bSyncSource

The application can be synchronized with the the EtherCAT bus cycle. For information on the handshake mechanism, see

[1].
When starting with process data exchange, the application has to do a handshake with the netX once to receive the first

process data. In order to do the first handshake toggle, the application has to call the xChannelIORead function once.
A common use case is to synchronize the process data exchange on SyncManager2 event with activated handshake
mode. If so, the following applies. After the slave has received a frame, this triggers an interrupt on which the slave copies
the output process data (master to salve) received from the bus into the triple buffer of the slave controller. As soon as
data is copied, the output valid mark is set and the AP task copies data into the local memory. The input handshake bit in
the dual-port memory is toggled and the local cycle of the application starts. After the slave has copied the received data,
the slave gives back the input handshake bit back to the netX. Now the slave copies its input data (slave to master) to the
triple buffer and gives the output handshake bit to the netX that copies the data to the bus and gives the handshake back
again. A synchronization for input process data exchange (slave to master) is not necessary because this can be done by
the application right after output data is received and thus as fast as possible.

The values for the discussed use case SM2 synchronous are:

Parameter Description Setting

bPDInHskMode Handshakebits which show that Data is copied to
DPM

RCX_IO_MODE_BUFF_HST_CTRL

bPDInSource Process data trigger source for inputs (master →
slave)

ECAT_DPM_SYNC_SOURCE_SM2

bPDOutHskMode Handshakebits which show that Data is copied to
DPM

RCX_IO_MODE_BUFF_HST_CTRL

bPDOutSource Process data trigger source for outputs (slave →
master)

ECAT_DPM_SYNC_SOURCE_FREERUN

bSyncSource for special syc handshake cell, not needed ECAT_DPM_SYNC_SOURCE_FREERUN

bSyncHskMode for special syc handshake cell, not needed RCX_SYNC_MODE_OFF

Table 38. Example for SM2 synchronous mode

A similar configuration is used for DC synchronous mode, which eliminates the jitter of the bus cycle. The only difference
is to set the bPDInSouce to ECAT_DPM_SYNC_SOURCE_SYNC0. The synchronization on SM3 event makes sense in
case only inputs are transmitted.

NOTE All values mentioned above have no influence on the real physical sync signal generation by the ESC.
Whether it is active or not and which sync signal. This is done by the following parameters in
ECAT_SET_CONFIG_SYNCPDI_T and from the master side which additionally has to activate signals
by writing to ESC registers.

If the slave requires to support multiple synchronisation modes, the application can use the Set handshake configuration
service to reconfigure the synchronization mode.

Sync PDI configuration parameter

Variable Type

Description
bSyncPdiConfig uint8_t

Sync PDI configuration (Esc register 0x151) Value 0 - 255 (default 0xCC)

usSyncImpulseLength uint16_t

Sync impulse length (in units of 10 ns) Value 0 - 5535 (default 1000)

bReserved uint8_t

Table 39. ECAT_SET_CONFIG_SYNCPDI_T

Even if a sync signal in the slave is activated through the configuration of the EtherCAT master, but the application does
not need the sync interrupt for synchronisation, the Interrupt has to be activated. This is necessary because the stack
uses the interrupt to monitor the presence of a sync signal. Otherwise, the stack cannot reach Operational state. Starting
with version 4.7.0, the Sync Interrupts bits 3 and 7 are allways enabled by default in loadable firmware.

Chapter 6 Application interface 55 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

The following flags are defined for bSyncPdiConfig:

Value Name

Description
0x01 ECAT_SET_CONFIG_SYNCPDI_SYNC0_OUTPUT_TYPE_MASK

SYNC0 Output type

0 - Push Pull

1 - OpenDrain
Note: netX100/500 firmware ignores this bit. They always work as Push Pull.

0x02 ECAT_SET_CONFIG_SYNCPDI_SYNC0_POLARITY_MASK

SYNC0 Polarity

0 - low active
1 - high active

0x04 ECAT_SET_CONFIG_SYNCPDI_SYNC0_OUTPUT_ENABLE_MASK

SYNC0 Output enable/disable

0 - disabled
1 - enabled

0x08 ECAT_SET_CONFIG_SYNCPDI_SYNC0_IRQ_ENABLE_MASK

SYNC0 mapped to PDI-IRQ

0 - disabled
1 - enabled

0x10 ECAT_SET_CONFIG_SYNCPDI_SYNC1_OUTPUT_TYPE_MASK

SYNC1 Output type

0 - Push Pulld
1 - OpenDrain Note: netX100/500 firmware ignores this bit. They always work as Push Pull.

0x20 ECAT_SET_CONFIG_SYNCPDI_SYNC1_POLARITY_MASK

SYNC1 Polarity

0 - low active
1 - high active

0x40 ECAT_SET_CONFIG_SYNCPDI_SYNC1_OUTPUT_ENABLE_MASK

SYNC1 Output enable/disable

0 - disabled
1 - enabled

0x80 ECAT_SET_CONFIG_SYNCPDI_SYNC1_IRQ_ENABLE_MASK

SYNC1 mapped to PDI-IRQ

0 - disabled
1 - enabled

Table 40. Definitions for parameter bSyncPdiConfig of ECAT_SET_CONFIG_SYNCPDI_T

Unique identification configuration parameter

Variable Type

Description
usStationAlias uint16_t

0x00 not evaluated here, handling by firmware 0x01 - 0xFF

usDeviceIdentification Value uint16_t

0x00 switch off handling, activate handling 0x01 - 0xFF

Table 41. ECAT_SET_CONFIG_UID_T

The value of usStationAlias will be written into the EEPROM and the register 0x12 of the ESC. The station alias address
can be written by a configuration tool to the EEPROM and is transferred to the ESC register at startup of the device. If it is
set by configuration parameter, this possibility is no longer available, because the value configured by the tool will be

Chapter 6 Application interface 56 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

overwritten by the value of usStationAlias. So for most use cases the parameter should be set to zero. The Configured

Station Alias can also be changed by an application using the Set Station Alias service.
If it is possible to set an address from the device side (via a rotary switch, a display or by other ways), a value unequal to
zero must be set in usDeviceIdentificationValue to activate the address handling in the slave stack. Otherwise, set the
value to zero to deactivate the handling. If the mechanism is activated, sending the packet
RCX_SET_FW_PARAMETER_REQ is needed in addition to update the address each time it has changed and also once
before the bus is switched on. See Explicit Device Identification for details.

Boot mailbox configuration parameter

Variable Type

Description
usBootstrapMbx Size uint16_t

0x00 switch off Bootstrapmailbox, 128 - max (size is chip dependent)

Table 42. ECAT_SET_CONFIG_BOOTMBX_T

The bootstrap mailbox size has a default value of 128 Byte which is defined in the configuration file. If the component
parameter evaluation is enabled by setting the flag in ulComponentInitialization, this value can be changed by the
configuration parameter. If the configuration parameter usBootstrapMbxSize is set to zero, it deactivates the Bootstrap
Mailbox. If the parameter is set to a value different from zero, it overwrites the default value. The minimum possible value
is 128 Byte. The maximum configurable size is chip dependent e.g. 3200 bytes - processdata size (three times counted
because of triple buffer) for each direction for netX 50/51/52 or 896 bytes - processdata size (three times) per direction
for netX 100/500. Mailboxes always have the same size for both directions and the size has to be 4 byte aligned.

Device info configuration parameter

Variable Type

Description
bGroupIdxLength uint8_t

length of char array _szGroupIdx, values 0 not set, 1 - 127 length

szGroupIdx[127] char

ascii code of the group name, length 127 byte

bImageIdxLength uint8_t

set to 0, parameter is not evaluated by firmware

szImageIdx[255] char

length 255 byte, set to 0

bOrderIdxLength uint8_t

length of char array _szOrderIdx, values 0 not set, 1 - 127 length

szOrderIdx[127] char

ascii code of the order name, length 127 byte

bNameIdxLength uint8_t

length of char array _szNameIdx, values 0 not set, 1 - 127 length

szNameIdx[127] char

ascii code of the name of the device, length 127 byte

Table 43. ECAT_SET_CONFIG_DEVICEINFO_T

The Device Info configuration parameter data structure ECAT_SET_CONFIG_DEVICEINFO_T for the SII relate to entries
in the ESI file as shown in following table.

Chapter 6 Application interface 57 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Parameter Meaning

szGroupIdx[127] ASCII code of the group name of the device SII entry GrouIdx related to ESI entry

Further used to add the device to the group:

szImageIdx[255] not evaluated by firmware

szOrderIdx[127] ASCII code of the order name of the device SII entry OrderIdx related to ESI entry:

szNameIdx[127] ASCII code of the name of the device SII entry NameIdx related to ESI entry:

Table 44. Device info configuration parameters

If the component parameter evaluation is enabled by setting the appropriate flag in ulComponentInitialisation, the Device
Info can be set by the configuration parameters. If not, the Hilscher default values of the target will be used (as in example
esi file). It is possible to set only the needed values and deactivate parameters by setting their length to zero.

NOTE Despite the length information, the parameters have to be set in the maximum array length, even if the
parameter length is shorter than possible or if the length is set to zero. The strings can be filled up with
zeros.

Sm length configuration parameter

Starting with version 4.7.0, the SyncManager mailboxes can be configured for SM0 and SM1 as well as the start
addresses for SM2 and SM3.

Chapter 6 Application interface 58 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type

Description
usMailboxSize uint16_t

used for the output (SM0) and for the input mailbox (SM1) as well, min is 128, max is available process-memory
byte size / 2

usSM2StartAddress uint16_t

sets the start address of the address space for output data, min value 0x1100, max value chip dependent

usSM3StartAddress uint16_t

sets the start address of the address space for input data, min value 0x1104, max value chip dependent

Table 45. ECAT_SET_CONFIG_SMLENGTH_T

The mailbox size for SM0 and SM1 have a default value of 128 bytes. The SM2/3 default start addresses dependend on
the chip. To change the default settings, the component parameter evaluation has to be set to enabled (flag in

ulComponentInitialization).
If the configuration parameter usMalboxSize is set to a value less than 128 bytes, the minimum possible value of 128 byte
is used or refused (depending on the version). The maximum configurable size is chip dependent and also depends on the
needed process data size. Mailboxes always have the same size for both directions and the size has to be 4 byte aligned.

■ The calculation for netX 50/51/52: 3200 bytes minus processdata size (three times counted because of triple buffer)
for each direction

■ The calculation for netX 100/500: 896 bytes minus processdata size (three times) per direction, but maximum 780
Byte.

The configuration parameter usSM2StartAddress defines the start address for the output (master/network → slave)
process data image. The address must be set directly after the mailbox data image to utilize space. If e.g. the mailbox has
the default value of 128 Byte, the start address has to be 0x1100, because the mailboxes start at 0x1000 and have a length

of 2 * 0x80 byte.
The configuration parameter usSM3StartAddress defines the start address for the input (slave→ master/network) process
data image. The address can be set directly after the output data image to utilize space. If e.g. the output image is 256
byte long and usSM2StartAddress starts at 0x1100, the start address for the input image has to be at minimum 0x1400,
because the process data uses triple buffers. The rest of the address space can be used for input data. If the example
values are used with netX 500, this is 768 (1792 - 2 * 128 - 3* 256) byte, which means 256 bytes usable because of the

triple buffer.
It is necessary to configure both syncmanager addresses even for devices which only have input data. As well as the
mailboxes also the processdata syncmanagers have to be 4 byte aligned. This means the tripplebuffers for netX100, 500,
51, 52, must each be 4 byte aligned. Values have to follow the calculatuion: usSM2StartAddress + 3 *

ulProcessDataOutputSize + 3) & (~3 < = usSM3StartAddress. If this component is used, the configured values are
automatically written to the virtual EEPROM by the Ethercat stack. The values for the default syncmanager length are
defined by the amount of configured process data (set in ECAT_SET_CONFIG_REQ_DATA_BASIC_T of the
configuration packet). This replaces the standard value 200 bytes used for Hilscher devices. Take care to adapt the ESI
file to the values you use in ECAT_ESM_CONFIG_SMLENGTH_T.

6.2.1.5 Set config confirmation packet

The stack sends this confirmation to the application.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x2CCF

Table 46. ECAT_SET_CONFIG_CNF_T

Chapter 6 Application interface 59 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

6.2.2 Set extended configuration service

The application can use this service for additional configuration parameters that are not included in the standard
configuration (basic and component parameters). The first entry in the packets data part is the structure type that defines
the content of the following data with additional size. Actually there are the following types defined as enumeration.

Value Name

Description
4 ECAT_SET_CONFIG_STRUCTURE_TYPE_SMS

5 ECAT_SET_CONFIG_STRUCTURE_TYPE_BOOTMBX

6 ECAT_SET_CONFIG_STRUCTURE_TYPE_END

no valid type, just for check

Table 47. ECAT_SET_CONFIG_EXT_STRUCTURE_TYPE_E

Structuretype: Standard syncmanager start addesses

Variable Type

Description
usMailboxSize uint16_t

used for the output (SM0) and for the input mailbox (SM1) as well, min is 128, max is 1522 Byte

usStdMbxSm0StartAddress uint16_t

sets the start address of the space for mbx out data, min value 0x1000

usStdMbxSm1StartAddress uint16_t

sets the start address of the space for mbx in data, min value 0x1000

usSM2StartAddress uint16_t

sets the start address of the address space for output data, min value 0x1000

usSM3StartAddress uint16_t

sets the start address of the address space for input data, min value 0x1000

Table 48. ECAT_SET_CONFIG_EXT_DATA_TYPE_SMS_T

Structuretype: Bootstrap mailbox start addesses

Variable Type

Description
usBootstrapMbxSize uint16_t

0 switches off special size for Mailbox for BOOT state

value 128 - 1522
Mailboxes always have the same size for both directions

usBootMbxSm0StartAddress uint16_t

0 use default rule
sets the start address of the space for mbx out data in boot state, min value 0x1000

usBootMbxSm1StartAddress uint16_t

0 use default rule
sets the start address of the space for mbx in data in boot state, min value 0x1000

Table 49. ECAT_SET_CONFIG_EXT_DATA_TYPE_BOOTMBX_T

Extended config: Main packet structure

Chapter 6 Application interface 60 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type

Description
tExtCnf_SMS ECAT_SET_CONFIG_EXT_DATA_TYPE_SMS_T

configures syncmanager protected start address

tExtCnf_BootMbx ECAT_SET_CONFIG_EXT_DATA_TYPE_BOOTMBX_T

configures mailbox if slave is in boot state

Table 50. ECAT_SET_CONFIG_EXT_STRUCTUREDATA_T

Variable Type

Description
usStructureType uint16_t

Type defining following data, use ECAT_SET_CONFIG_STRUCTURE_TYPE_E

tStructureData ECAT_SET_CONFIG_EXT_STRUCTUREDATA_T

Table 51. ECAT_SET_CONFIG_EXT_REQ_DATA_T

Variable Type

Description
tHead HIL_PACKET_HEADER_T

tData ECAT_SET_CONFIG_EXT_REQ_DATA_T

Table 52. ECAT_SET_CONFIG_EXT_REQ_T

Variable Type

Description
tHead HIL_PACKET_HEADER_T

no data part

Table 53. ECAT_SET_CONFIG_EXT_CNF_T

6.2.3 Set handshake configuration service

The application can use this service to (re)configure the mode of operation of the process data and synchronization
handshake. This service is optional and only needed if the configuration can be changed.

The handshake configuration is also adjustable with the Sync Configuration Parameter of the set configuration service.
Section Sync modes configuration parameter contains the values range and a brief description of the parameters. The
EtherCAT slave supports the Host Controlled handshake mode. The application must not send the set handshake
configuration request when the slave is in a process data exchange mode: SafeOP or OP. Especially when switching
from a DC mode to a non-DC mode it can come to a deadlock situation when process data exchange is not stopped from
application side (cifx API´s XChannelIORead/Write commands) before switching the mode. In this case, the stack can
miss the toggeling of handshake bits from application side and never toggels the bits back.

NOTE If DC and a non-DC modes are supported, the actual setting from master side can be determined by
usSyncControl value of the AL control changed indication packet.

For Set handshake configuration request and Set handshake configuration confirmation see [2].

6.2.4 Set IO Size service

The application can use this service to change the process data input length and/or the process data output length. This

service does not affect any other parameter.
The main use case for this service is to set new data length for dynamic process data configuration. Section Dynamic

PDO mapping shows the sequences and when the application has to use the Set IO Size service.

Chapter 6 Application interface 61 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

The application must not use this service, as soon as the slave has reached SafeOp or Op state and is exchanging data.

6.2.4.1 set io size request packet

The application can use this service to change the size of the I/O image.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 8

ulSta uint32_t 0

ulCmd uint32_t 0x2CC0

tData ECAT_DPM_SET_IO_SIZE_REQ_DATA_T

ulProcessDataOutputSi
ze uint32_t Process Data Output Length 0 - 512 (netX100/500), 0 - 1024 (netX50/netX51)

ulProcessDataInputSiz
e uint32_t Process Data Input Length 0 - 512 (netX100/500), 0 - 1024 (netX50/netX51)

Table 54. ECAT_DPM_SET_IO_SIZE_REQ_T

6.2.4.2 set io size confirmation packet

The stack will send this confirmation to the application.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x2CC1

Table 55. ECAT_DPM_SET_IO_SIZE_CNF_T

6.2.5 Set Station Alias service

This service is used to set a Station Alias to the register 0x0012 in the EtherCAT Slave. The value to be set in the register
is represented with the variable usStationAlias of the request packet.

In the past, the application had to use several packets in order to set the Station Alias Address. Now the EtherCAT Slave
stack executes the Station Alias address handling. Starting with version 4.5 (starting with version 4.6 for cifX cards), the
Station Alias address (Second Station Address) is saved non-volatile and afterwards set to the ESC register by the
EtherCAT stack. As a result, the application does not need to handle the Station Alias address anymore compared to
earlier EtherCAT Slave stack versions. The netX 52 firmware has not implemented this feature yet and the application has

to do the Station Alias address handling.
In case the the Station Alias address handling is implemented in the application, the application overwrites the values set
by the firmware (SII and ESC register value). We recommend to remove the Station Alias address handling from the
application (except for netx52).

6.2.5.1 set station alias confirmation packet

This request has to be sent from the application to the stack in order to set a station alias

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 2

ulSta uint32_t 0

ulCmd uint32_t 0x2CC6

tData ECAT_DPM_SET_STATION_ALIAS_REQ_DATA_T

Chapter 6 Application interface 62 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

usStationAlias uint16_t Configured Station Alias also called Second Station Address

Table 56. ECAT_DPM_SET_STATION_ALIAS_REQ_T

6.2.5.2 set station alias confirmation packet

The stack will send this confirmation to the application.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x2CC7

Table 57. ECAT_DPM_SET_STATION_ALIAS_CNF_T

6.2.6 Get Station Alias service

This service is used to request a formerly set Station Alias from the protocol stack. The desired Station Alias is delivered
in variable usStationAlias of the confirmation packet.

6.2.6.1 Get Station Alias request packet

This request has to be sent from the application to the stack

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x2CC8

Table 58. ECAT_DPM_GET_STATION_ALIAS_REQ_T

6.2.6.2 Get Station Alias confirmation packet

The stack will send this confirmation to the application.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 2

ulSta uint32_t 0

ulCmd uint32_t 0x2CC9

tData ECAT_DPM_GET_STATION_ALIAS_CNF_DATA_T

usStationAlias uint16_t Configured Station Alias also called Second Station Address

Table 59. ECAT_DPM_GET_STATION_ALIAS_CNF_T

6.2.7 Relation between Set configuration packet and ESI file

The Set configuration service and the ESI file are strongly connected with one another. In order to clarify this, we explain
for a specific ESI file, which of its parts corresponds with which part of the Set configuration packet. The following figure
shows the ESI file and its relevant parts:

Chapter 6 Application interface 63 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Figure 18. Relation between Set Configuration packet and ESI file

The following elements of the XML-based ESI file relate with specific parameters within the configuration process:

1. Element <Vendor><Id>:

This element corresponds to the ulVendorId element of the Set Configuration packet.
To be set within Set Configuration packet and changed within ESI file.

2. Element <Vendor><Name>:
To be changed within ESI file only.

3. Element <Descriptions><Devices><Device><Type>:
To be set within Set Configuration packet and changed within ESI file. Affects element contents. Take this element

from structure ECAT_SET_CONFIG_DEVICEINFO_T (element szOrderIdx).

Attribute Product code:

This element corresponds to the ulProductCode element of the Set Configuration packet. Attribute Revision number:
This element corresponds to the ulRevisionNumber element of the Set Configuration packet.

4. Element <Descriptions><Devices><Device><Name>:

Element contents (CDATA entry)
Take this element from structure ECAT_SET_CONFIG_DEVICEINFO_T (element szNameIdx). This element
corresponds to the ul DeviceName element of the Set Configuration packet To be set within Set Configuration packet
and changed within ESI file.

5. Element <Descriptions><Groups><Group><Type>:

Subelement <Type>:
Take this element from structure ECAT_SET_CONFIG_DEVICEINFO_T (element szGroupIdx). To be set within Set

Configuration packet and changed within ESI file.

Chapter 6 Application interface 64 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Subelement <Name>:

To be changed within ESI file only.

Subelement <ImageData16x14>:
To be changed within ESI file only.

6. Element <Descriptions><Devices><Device><GroupType>:
Element contents To be changed within ESI file only.

7. Element <Descriptions><Devices><Device><Sm>:

Attribute Default Size
This entry is mandatory for SM0 und SM1, otherwise optional. It is automatically set, if sync mode is activated within
structure ECAT_SET_CONFIG_SMLENGTH_T. To be set within Set Configuration packet and changed within ESI file.

8. Element <Descriptions><Devices><Device><RxPdo>:
The PDOs have to be specified manually here. Specify attributes Index, Name, Entry.

9. Element <Descriptions><Devices><Device><Mailbox>:
Take information from structure ECAT_SET_CONFIG_COE_T (for instance the element bCoeFlags contains the flag
information such as SdoInfo, PdoUpload and CompleteAccess).+ To be set within Set Configuration packet and
changed within ESI file. Affects subelement <CoE> and subelement <FoE>. ESI elements <CoE>, <FoE>, … need to be
added in correct order.

10. Element <Descriptions><Devices><Device><Dc>:
Take information from structure ECAT_SET_CONFIG_SYNCMODES_T. To be set within Set Configuration packet
and changed within ESI file. Affects subelement <OpMode>.

11. Element <Descriptions><Devices><Device><Eeprom>:

Subelement <ConfigData>:

Usually, there is no need for changes here.

Subelement <BootStrap>:
If Set Configuration packet deactivates boot mailbox (i.e. usBootstrapMbx Size =0), remove ESI entry.

12. Element <Descriptions><Devices><Device><ImageData16x14>:
Element contents To be changed within ESI file only

6.3 EtherCAT state machine

Service Command Command Code

Set configuration service ECAT_SET_CONFIG_REQ 0x2CCE

ECAT_SET_CONFIG_CNF 0x2CCF

Register for AL control changed indications service ECAT_ESM_REGISTER_FOR_ALCONTROL_INDICATI
ONS_REQ

0x1B18

ECAT_ESM_REGISTER_FOR_ALCONTROL_INDICATI
ONS_CNF

0x1B19

Unregister from AL control changed indications service ECAT_ESM_UNREGISTER_FROM_ALCONTROL_INDI
CATIONS_REQ

0x1B1A

ECAT_ESM_UNREGISTER_FROM_ALCONTROL_INDI
CATIONS_CNF

0x1B1B

AL control changed service ECAT_ESM_ALCONTROL_CHANGED_IND 0x1B1C

ECAT_ESM_ALCONTROL_CHANGED_RES 0x1B1D

AL status changed service ECAT_ESM_ALSTATUS_CHANGED_IND 0x19DE

ECAT_ESM_ALSTATUS_CHANGED_RES 0x19DF

Set AL status service ECAT_ESM_SET_ALSTATUS_REQ 0x1B48

ECAT_ESM_SET_ALSTATUS_CNF 0x1B49

Get AL status service ECAT_ESM_GET_ALSTATUS_REQ 0x2CD0

ECAT_ESM_GET_ALSTATUS_CNF 0x2CD1

Table 60. Overview over the EtherCAT state machine related packets of the EtherCAT Slave stack

Chapter 6 Application interface 65 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

6.3.1 Register for AL control changed indications service

In EtherCAT, usually the master controls the state of all slaves. The master can request state changes from the slave. Each
time the master requests such a state change of the EtherCAT State Machine (ESM), an indication AL control changed
indication packet is received at the slave informing it about the master’s state change request. Then the slave can decide

on its own whether to perform or deny the state change requested by the master.
However, in order to receive these indications, it is necessary that the application first has to register for the AL control
changed indications service. For more information on this service, also refer to Handling and controlling the EtherCAT
State Machine

6.3.1.1 Register for AL control changed indication request packet

This request has to be sent from the application to the stack in order to register for the reception of AL control changed
indications signaling a state change request by the EtherCAT Master. Starting with stack version V4.3.16, this packet is
extended with a data part and now supports the mechanism to activate indications for state changes from BOOT to INIT.
The former packet still works for backward compatibility. This mechanism is compliant to the Semiconductor
specification ETG5003-2. + After successful registration on state change requests, the ESM task of the stack will send
ECAT_ESM_ALCONTROL_CHANGED_IND_T to the registered application.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 4

ulSta uint32_t 0

ulCmd uint32_t 0x1B18

tData ECAT_ESM_REGISTER_FOR_ALCONTROL_INDICATIONS_REQ_DATA_T

fEnableBootToInitHand
ling uint32_t 0 disables the indication mechanism, other enables values 0 - 2up32 -1

Table 61. ECAT_ESM_REGISTER_FOR_ALCONTROL_INDICATIONS_REQ_T

6.3.1.2 Register for AL control changed indications confirmation packet

This confirmation will be sent from the stack to the application. It confirms that the stack is ready to process AL control
changed indications.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B19

Table 62. ECAT_ESM_REGISTER_FOR_ALCONTROL_INDICATIONS_CNF_T

6.3.2 Unregister from AL control changed indications service

This service unregisters from AL control Changed Indications. The stack will not generate AL control changed indications
any more. For more information on this service, also refer to Handling and controlling the EtherCAT State Machine

6.3.2.1 Unregister from AL control changed indications request packet

This request has to be sent from the application to the stack in order to unregister from the reception of AL control
changed indication. + After unregistration, on state change requests the ESM task will discontinue sending AL control
changed indications to the unregistered application.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

Chapter 6 Application interface 66 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

ulSta uint32_t 0

ulCmd uint32_t 0x1B1A

Table 63. ECAT_ESM_UNREGISTER_FROM_ALCONTROL_INDICATIONS_REQ_T

6.3.2.2 Unregister from AL control changed indications confirmation packet

This confirmation will be sent from the stack to the application. It confirms that the stack is informed about no longer
receiving AL control Changed indications.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B1B

Table 64. ECAT_ESM_UNREGISTER_FROM_ALCONTROL_INDICATIONS_CNF_T

6.3.3 AL control changed service

In EtherCAT, usually the master controls the state of all slaves. Therefore, the EtherCAT Master can request state
changes from the slave. Then the slave can decide on its own whether to perform or deny the state change requested by

the master.
Each time the master requests such a state change of the EtherCAT State Machine (ESM), an indication must be inform
the application at the slave about the master’s state change request. This is done by the AL control Changed Indication

service.
For more information on this service, also refer to Handling and controlling the EtherCAT State Machine

NOTE It is necessary to register the application by using the Register for AL control changed indications
service in order to receive an AL control changed indication.

Some additional Hints on synchronisation modes You have to use the objects 0x1C32 (Sync Manager 2) or 0x1C33 (Sync
Manager 3) for choosing and adjusting the synchronization mode of the EtherCAT Slave (free running, synchronized to
SM2/3 event or synchronized to Distributed Clocks Sync Event), if the device supports more than freerun. For more

information, see [11]).
This request has to be confirmed either by the AP Task or in case of LOM by user tasks.)

6.3.3.1 AL control changed indication packet

This indication is sent by the stack when the master requests a state change of the ESM. The structure tAlControl
contains AL control register dependent information.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t None

ulSta uint32_t 0

ulCmd uint32_t 00x1B1C

tData ECAT_ESM_ALCONTROL_CHANGED_IND_DATA_T

tAlControl
ECAT_ALCONTROL_
T

Structure representing the AL control register ECAT_ALCONTROL_T, value 0 -
0xFFFF

usErrorLed uint16_t LED error state, value 0 - 8 for the current state of the error LED, meaning see
chapter Error LED

usSyncControl uint16_t Sync Control, value 0 - 0xFFFF, PDI (sync signal) activation reflects ESC reg.
0x0980 [3].

Chapter 6 Application interface 67 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

usSyncImpulseLength uint16_t

Length of Sync Impulse, value 0 - 0xFFFF (in units of 10 nanoseconds), ESC reg.
0x9A0 [3], the real cycle time has to be calculated: Cycle Time of SYNC1 =
((DcCycTime1 div DcCycTime0) + 1) * DcCycTime0. * Shift Time of SYNC1 =

DcCycTime1 mod DcCycTime0)

ulSync0CycleTime uint32_t Sync0 Cycle Time (in units of 1 nanoseconds), ESC register 0x0151 [3]

ulSync1CycleTime uint32_t Sync1 Cycle Time (in units of 1 nanoseconds), ESC register 0x0151 [3]

bSyncPdiConfig uint8_t Sync PDI Configuration, value 0 - 0xFF, [3]

Table 65. ECAT_ESM_ALCONTROL_CHANGED_IND_T

The following structure ECAT_ALCONTROL_T is bitwise packet representing the AL control register described in the
IEC 61158-6-12 norm.

typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST ECAT_ALCONTROL_tag
{
 uint8_t uState : 4; /*!< :4 Bits used */
 uint8_t fAcknowledge : 1; /*!< :1 Bits used */
 uint8_t reserved : 3; /*!< :3 Bits used */
 uint8_t bApplicationSpecific : 8; /*!< :8 Bits used */
} ECAT_ALCONTROL_T;

The variables in ECAT_ALCONTROL_T have the following meaning: The lowest four bits of the first byte of the structure
contain the state which is requested by the master. Following values are possible:

Value Name

Description
0x01 ECAT_AL_STATE_INIT

0x02 ECAT_AL_STATE_PRE_OPERATIONAL

0x03 ECAT_AL_STATE_BOOTSTRAP_MODE

0x04 ECAT_AL_STATE_SAFE_OPERATIONAL

0x08 ECAT_AL_STATE_OPERATIONAL

Table 66. State definitions for AlControl uState

Value State

1 Init state

2 Pre-Operational state

3 Bootstrap state

4 Safe-Operational state

8 Operational state

Table 67. Coding of EtherCAT state

The master will set the flag fAcknowledge to 0x01 if the state change happens because of a previous error situation of the
slave. The master tries to reset this error situation with this state change. In case of a regular state change (e.g. during
system Startup), the flag fAcknowledge will be set to 0x00. For more information regarding fAcknowledge see [10].

According to [10] the last bits of the structure are reserved, respectively application specific.

6.3.3.2 AL control changed response packet

This response has to be sent from the application to the stack.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

Chapter 6 Application interface 68 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

ulLen uint32_t None

ulSta uint32_t 0

ulCmd uint32_t 00x1B1D

Table 68. ECAT_ESM_ALCONTROL_CHANGED_RES_T

6.3.4 AL status changed service

With this service the stack indicates to the application that the AL status (register 0x0130) of the EtherCAT Slave has
changed. The new EtherCAT State and the change bit is indicated.

NOTE It is necessary to register the application by RCX_REGISTER_APP_REQ in order to receive an AL
status changed indication.

For more information on this service, also refer to section Handling and controlling the EtherCAT State Machine,
especially Figure Sequence diagram of state change with indication to application/host and Figure Sequence diagram of
state change controlled by application/host with additional AL status changed indications.

6.3.4.1 AL status changed indication

This indication is sent to an application each time a change of AL status has happened. An Application registers for this
packet via RCX_REGISTER_APP_REQ. The structure ECAT_ALSTATUS_T is quite similar to those defined in reference
[10].

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 6

ulSta uint32_t 0

ulCmd uint32_t 00x19DE

tData ECAT_ESM_ALSTATUS_CHANGED_IND_DATA_T

tAlStatus ECAT_ALSTATUS_T Structure representing the AL status register ECAT_ALSTATUS_T

usErrorLed uint16_t Error LED state, meaning see section Error LED and [10]

usAlStatusCode uint16_t AL status Code, for listings of supported general and vendor specific AL status
Codes see EcsV4_Public.h file

Table 69. ECAT_ESM_ALSTATUS_CHANGED_IND_T

The following structure ECAT_ALSTATUS_T is bitwise packet representing the AL status register described in the IEC
61158-6-12 norm.

typedef __HIL_PACKED_PRE struct __HIL_PACKED_POST ECAT_ALSTATUS_Ttag
{
 uint8_t uState : 4; /*!< :4 Bits used */
 uint8_t fChange : 1; /*!< :1 Bits used */
 uint8_t reserved : 3; /*!< :3 Bits used */
 uint8_t bApplicationSpecific : 8; /*!< :8 Bits used */
} ECAT_ALSTATUS_T;

The variables in ECAT_ALSTATUS_T have the following meaning: The lowest four bits of the first byte of this structure
are mapped to variable uState in the following manner:

Value Name

Description
0x01 ECAT_AL_STATE_INIT

0x02 ECAT_AL_STATE_PRE_OPERATIONAL

0x03 ECAT_AL_STATE_BOOTSTRAP_MODE

Chapter 6 Application interface 69 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Value Name

Description
0x04 ECAT_AL_STATE_SAFE_OPERATIONAL

0x08 ECAT_AL_STATE_OPERATIONAL

Table 70. State definitions for AlStatus uState

If the flag fChange is set to 0x01, the cause of the state change was the slave itself, which means that the state change
happened without request of the master because of an error situation of the slave itself. To get more information check

the usAlStatusCode field.
According to reference [10] the last bits of the structure are reserved, respectively application specific.

6.3.4.2 AL status changed response

This response has to be sent from the application to the stack after receiving an AL status Changed Indication.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x19DF

Table 71. ECAT_ESM_ALSTATUS_CHANGED_RES_T

6.3.5 Set AL status service

The request is used in the following cases:

1. Signaling an error to the master
■ For signaling an error to the master, the usAlStatusCode has to be set to the appropriate error code, see section

[_al_status_codes].
2. Signaling to continue the EtherCAT state machine as reaction to an AL control changed indication

■ If it signals to continue the EtherCAT state machine as reaction to a ECAT_ESM_ALCONTROL_CHANGED_REQ,
the usAlStatusCode has to be set to zero and the field uState in tAlStatus must be set to the state given in the
equivalent ECAT_ESM_ALCONTROL_CHANGED_IND field tAlControl.uState.

For more information on this service, also refer to section AL control register and AL status register.

6.3.5.1 Set AL status request

This request has to be sent from the application to the stack in order to trigger or request an ESM state transition.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 4

ulSta uint32_t 0

ulCmd uint32_t 0x1B48

tData ECAT_ESM_SET_ALSTATUS_REQ_DATA_T

bAlStatus uint8_t

AL status as formatted in EtherCAT AL status register, see uState in

ECAT_ALSTATUS_T, values 1 - 4, 8
NOTE: The application does not have to set the error bit in case of a failure. If
usAlStatusCode is used, the error is implicit.

bErrorLedState uint8_t Error LED states as described in section Error LED , values 1 - 8

Chapter 6 Application interface 70 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

usAlStatusCode uint16_t AL status code to set or 0 for success. For more information about the available AL
status codes see the EcsV4_Public.h file or the EtherCAT specification.

Table 72. ECAT_ESM_SET_ALSTATUS_REQ_T

6.3.5.2 Set AL status confirmation packet

This confirmation will be sent from the stack to the application after a Set AL status request has been issued.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B49

Table 73. ECAT_ESM_SET_ALSTATUS_CNF_T

6.3.6 Get AL status service

This service allows to retrieve the current contents of the AL status register.

6.3.6.1 Get AL status request packet

This request has to be sent from the application to the stack in order to retrieve the current contents of the AL status
register

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x2CD0

Table 74. ECAT_ESM_GET_ALSTATUS_REQ_T

6.3.6.2 Get AL status confirmation packet

The stack will send this confirmation to the application if the current contents of the AL status register have been
requested.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 4

ulSta uint32_t 0

ulCmd uint32_t 2CD1

tData ECAT_ESM_GET_ALSTATUS_CNF_DATA_T

bAlStatus uint8_t AL status as formatted in EtherCAT AL status register, see uState in
ECAT_ALSTATUS_T, values 1 - 4, 8

bErrorLedState uint8_t Error LED states as described in section Error LED , values 1 - 8

usAlStatusCode uint16_t AL status code to set or 0 for success. For more information about the available AL
status codes see the EcsV4_Public.h file or the EtherCAT specification.

Table 75. ECAT_ESM_GET_ALSTATUS_CNF_T

Chapter 6 Application interface 71 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

6.4 CoE

Service Command Command Code

Send CoE emergency service ECAT_COE_SEND_EMERGENCY_REQ 0x1994

ECAT_COE_SEND_EMERGENCY_CNF 0x1995

Table 76. Overview over the CoE packets of the EtherCAT Slave stack

6.4.1 Send CoE emergency service

This service allows sending a CoE emergency mailbox message to notify about internal device errors. Since this is a one-
way service, there is no defined response from the remote station. The emergency massage can only be transfered if the
mailbox is active (all states except Init). The station address usStationAddress can be used for two purposes:

■ For addressing a master, it is always set to the value 0.
■ For addressing a slave, additional preparations at the master are necessary. For more information on this topic, refer to

the master’s documentation. Set usStationAddress to the value that has been assigned to the respective slave to be
addressed by the EtherCAT Master.

Figure 19. Send CoE emergency service

6.4.1.1 Send CoE emergency request

The application has to send this request to the EtherCAT Slave protocol stack in order to signal an emergency event
within the slave to the master. For a list of possible values of bErrorRegister see below.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 12

ulSta uint32_t 0

ulCmd uint32_t 0x1994

tData ECAT_COE_SEND_EMERGENCY_REQ_DATA_T

usStationAddress uint16_t The station address is assigned to the slave by the master during ESM State Init and
further on used to identify the slave.

usPriority uint16_t Priority of the mailbox message, value 0-3, 0 lowest, 3 highest

usErrorCode uint16_t Error code as defined by IEC 61158 Part 2-6 Type 12 (or ETG 1000.6). value 0 -
0xFFFF, See CoE emergency codes or Table 50 of reference [9]

bErrorRegister uint8_t Error register as defined by IEC 61158 Part 2-6 Type 12 (or ETG 1000.6)

abDiagnosticData[5] uint8_t Diagnostic Data specific to error code

Table 77. ECAT_COE_SEND_EMERGENCY_REQ_T

Name Bit mask

D0 Generic error 0x0001

D1 Current error 0x0002

D2 Voltage error 0x0004

D3 Temperature error 0x0008

D4 Communication error 0x0010

D5 Device profile specific error 0x0020

Chapter 6 Application interface 72 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

D6 Reserved 0x0040

D7 Manufacturer specific error 0x0080

Table 78. Bit Mask bErrorRegister

The following rules apply for the relationship between usErrorCode, bErrorRegister and abDiagnosticData:

1. At error codes (hexadecimal values) 10xx bit D0 (Generic error) of bit mask bErrorRegister should be set, otherwise
reset.

2. At error codes (hexadecimal values) 2xxx bit D1 (Current error) of bit mask bErrorRegister should be set, otherwise
reset.

3. At error codes (hexadecimal values) 3xxx bit D2 (Voltage error) of bit mask bErrorRegister should be set, otherwise
reset.

4. At error codes (hexadecimal values) 4xxx bit D3 (Temperature error) of bit mask bErrorRegister should be set,
otherwise reset.

5. At error codes (hexadecimal values) 81xx bit D4 (Communication error) of bit mask bErrorRegister should be set,
otherwise reset.

The relationship between usErrorCode, bErrorRegister and abDiagnosticData may also depend on the used profile.

6.4.1.2 Send CoE emergency confirmation packet

The stack will send this confirmation packet to the application on reception of a CoE emergency request.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 12

ulSta uint32_t 0

ulCmd uint32_t 0x1995

Table 79. ECAT_COE_SEND_EMERGENCY_CNF_T

6.5 Packets for Object Dictionary access

All packets for object dictionary access are described in [4]

6.6 Slave Information Interface (SII in virtual EEPROM)

Service Command Command Code

SII read service ECAT_ESM_SII_READ_REQ 0x1914

ECAT_ESM_SII_READ_CNF 0x1915

SII write service ECAT_ESM_SII_WRITE_REQ 0x1912

ECAT_ESM_SII_WRITE_CNF 0x1913

Register for SII write Indications service ECAT_ESM_REGISTER_FOR_SIIWRITE_INDICATIONS
_REQ

0x1B82

ECAT_ESM_REGISTER_FOR_SIIWRITE_INDICATIONS
_CNF

0x1B83

Unregister from SII write indications service ECAT_ESM_UNREGISTER_FROM_SIIWRITE_INDICAT
IONS_REQ

0x1B84

ECAT_ESM_UNREGISTER_FROM_SIIWRITE_INDICAT
IONS_CNF

0x1B85

SII write Indication service ECAT_ESM_SII_WRITE_IND 0x1B80

ECAT_ESM_SII_WRITE_REQ 0x1B81

Table 80. Overview over the SII packets of the EtherCAT Slave stack

Chapter 6 Application interface 73 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

6.6.1 SII read service

The service is used for reading information that has been stored in the Slave Information Interface (SII) of the device. The
SII holds information about the slave, which the master needs for administrative purposes. For more details, also see
Slave Information Interface (SII) in the stack structure chapter.

6.6.1.1 SII read request packet

This packet performs an SII read request. A data block of the size ulSize (= n) is read from the location with the specified
offset ulOffset and is returned with the confirmation packet.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 8

ulSta uint32_t 0

ulCmd uint32_t 0x1914

tData ECAT_ESM_SII_READ_REQ_DATA_T

ulOffset uint32_t Offset value (byte address within the SII image)

ulSize uint32_t Size of data block to read

Table 81. ECAT_ESM_SII_READ_REQ_T

6.6.1.2 SII read confirmation packet

The stack will send this confirmation packet to the application on reception of an SII read request packet.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t None

ulSta uint32_t 0

ulCmd uint32_t 0x1915

tData ECAT_ESM_SII_READ_CNF_DATA_T

abData[ECAT_ESM_SII_
READ_DATA_BYTESIZE] uint8_t Field for read data

Table 82. ECAT_ESM_SII_READ_CNF_T

6.6.2 SII write service

The service is used for sending information to be stored in the Slave Information Interface (SII) of the device. The SII holds
information about the slave, which the master needs for administrative purposes. For more details, also see Slave
Information Interface (SII) in the stack structure chapter.

6.6.2.1 SII write request packet

This packet performs an SII write request.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 4 + n

ulSta uint32_t 0

ulCmd uint32_t 0x1912

tData ECAT_ESM_SII_WRITE_REQ_DATA_T

ulOffset uint32_t Offset value (byte address within the SII image)

Chapter 6 Application interface 74 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

abData[ECAT_ESM_SII_
WRITE_DATA_BYTESIZE
]

uint8_t
Data to be written

Table 83. ECAT_ESM_SII_WRITE_REQ_T

6.6.2.2 SII write confirmation packet

The stack will send this confirmation packet to the application on reception of an SII write request packet.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 4 + n

ulSta uint32_t 0

ulCmd uint32_t 0x1913

Table 84. ECAT_ESM_SII_WRITE_CNF_T

6.6.3 Register for SII write Indications service

The application has to register on the EtherCAT Slave protocol stack in order to receive indications when the EtherCAT
master writes to the SII.

6.6.3.1 Register for SII write Indications request packet

The application has to send this request to the EtherCAT Slave protocol stack in order to register for SII write indications

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 4

ulSta uint32_t 0

ulCmd uint32_t 0x1B82

tData ECAT_ESM_REGISTER_FOR_SIIWRITE_INDICATIONS_REQ_DATA_T

ulIndicationFlags uint32_t Indication flags

Table 85. ECAT_ESM_REGISTER_FOR_SIIWRITE_INDICATIONS_REQ_T

ulIndicationFlags

Actually there is only one filter flag defined:
ECAT_ESM_FILTER_SIIWRITE_INDICATIONS_STATION_ALIAS: In the past, the application had to use several
packets in order to set station alias address. Bit 0 of the variable ulIndicationFlags is set to 1 (define
ECAT_ESM_FILTER_SIIWRITE_INDICATIONS_STATION_ALIAS) an application received only an SII write indication, if
the station alias has been written from the master. Other write accesses will not lead to an SII write indication. If not set,
every write access leads to an indication. The filter ECAT_ESM_FILTER_SIIWRITE_INDICATIONS_STATION_ALIAS

was mainly intended helping to implement the remanent saving of the station alias address from application side.

Now the EtherCAT Slave stack executes the address handling concerning the station alias. Starting with version 4.5
(starting with version 4.6 for cifX cards). To use this filter function is no longer necessary for the application, except for

netX52 devices.
This section relates to section Set Station Alias service.

6.6.3.2 Register for SII write confirmation packet

The stack will send this confirmation packet to the application on reception of a
ECAT_ESM_REGISTER_FOR_SIIWRITE_INDICATIONS_REQ packet.

Chapter 6 Application interface 75 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B83

Table 86. ECAT_ESM_REGISTER_FOR_SIIWRITE_INDICATIONS_CNF_T

6.6.4 Unregister from SII write indications service

This service is used to unregister from getting indications, which occur when the EtherCAT Master writes to the SII.

6.6.4.1 Unregister from SII write indications request

This request has to be sent from the application to the stack in order to unregister from sii write indications.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B84

Table 87. ECAT_ESM_UNREGISTER_FROM_SIIWRITE_INDICATIONS_REQ_T

6.6.4.2 Unregister from SII write confirmation packet

The stack will send this confirmation packet to the application on reception of an
ECAT_ESM_UNREGISTER_FROM_SIIWRITE_INDICATIONS_REQ_T packet.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B85

Table 88. ECAT_ESM_UNREGISTER_FROM_SIIWRITE_INDICATIONS_CNF_T

6.6.5 SII write Indication service

The service indicates that the master has written to the SII.

Chapter 6 Application interface 76 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Figure 20. SII write Indication service

Permanent SII EEPROM storage

If the AP task requires implementing permanent SII EEPROM storage, it is possible to react on an SII write indication with
a SII read request. This allows storing the SII image in any kind of permanent storage on the host side. The stored data
can be written back on power up to the SII image with the SII write Request.

NOTE It is necessary to register the application by using the Register for SII write Indications Request in order
to receive an SII write Indication

6.6.5.1 SII write indication packet

The stack sends this indication to the application when the EtherCAT Master has written data to the SII.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 6

ulSta uint32_t 0

ulCmd uint32_t 0x1B80

tData ECAT_ESM_SII_WRITE_IND_DATA_T

ulSiiWriteStartAddres
s uint32_t Address to which was written in SII

abData[2] uint8_t Data which was written to SII

Table 89. ECAT_ESM_SII_WRITE_IND_T

6.6.5.2 SII write response packet

The application has to send this response to the protocol stack on reception of an SII write indication packet.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B81

Table 90. ECAT_ESM_SII_WRITE_RES_T

Chapter 6 Application interface 77 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

6.7 Ethernet over EtherCAT (EoE)

Service Command Command Code

Register for frame indications service ECAT_EOE_REGISTER_FOR_FRAME_INDICATIONS_
REQ

0x1B76

ECAT_EOE_REGISTER_FOR_FRAME_INDICATIONS_
CNF

0x1B77

Unregister from frame indications service ECAT_EOE_UNREGISTER_FROM_FRAME_INDICATIO
NS_REQ

0x1B78

ECAT_EOE_UNREGISTER_FROM_FRAME_INDICATIO
NS_CNF

0x1B79

Ethernet send frame service ECAT_EOE_SEND_FRAME_REQ 0x1B72

ECAT_EOE_SEND_FRAME_CNF 0x1B73

Ethernet frame received service ECAT_EOE_FRAME_RECEIVED_IND 0x1B70

ECAT_EOE_FRAME_RECEIVED_RES 0x1B71

Register for IP parameter indications service ECAT_EOE_REGISTER_FOR_IP_PARAM_INDICATION
S_REQ

0x1B7A

ECAT_EOE_REGISTER_FOR_IP_PARAM_INDICATION
S_CNF

0x1B7B

Unregister from IP parameter Indications service ECAT_EOE_UNREGISTER_FROM_IP_PARAM_INDICA
TIONS_REQ

0x1B7C

ECAT_EOE_UNREGISTER_FROM_IP_PARAM_INDICA
TIONS_CNF

0x1B7D

Set IP parameter service ECAT_EOE_SET_IP_PARAM_IND 0x1B7E

ECAT_EOE_SET_IP_PARAM_RES 0x1B7F

Get IP parameter service ECAT_EOE_GET_IP_PARAM_IND 0x1B50

ECAT_EOE_GET_IP_PARAM_RES 0x1B51

Table 91. Overview over the EoE Packets of the EtherCAT Slave Stack

EoE is a tunnel protocol which is tunneled via the EtherCAT mailbox for Ethernet frames. All EoE communication is
passed through the master. There is no direct communication path. This causes the achievable bandwidth to be largely

decreased compared to the actual bandwidth on the cable.
EoE requires the EtherCAT Slave stack to be at least in Pre-Operational state in order to be able to communicate via the

EtherCAT mailbox.
It is also necessary that the EtherCAT Master supports EoE since all tunneled Ethernet frames are transported through
the master. The master will typically assign one of the following values depending on the EoE section within the mailbox
section of the EtherCAT Slave Information (ESI) file:

■ MAC address
■ IP address

Example of a mailbox section within the ESI enabling IP and MAC address assignment

<Mailbox>
 <EoE IP="1" MAC="1"/> <!-- EoE supported and IP and MAC assignment selected -->
 <CoE SdoInfo="1" CompleteAccess="0"/>
</Mailbox>

This will result into an IP parameter Written By Master indication if the application has registered for receiving this
indication.

NOTE The EoE service is only responsible for the tunneling of Ethernet frames. Transport layers like TCP or
UDP have to be added by the user on application side. Only the targets for netX52 (Socket API),
netx51TCP (Packet Api) and netRAPID51 (Packet Api) includes the transport layers TCP or UDP via
channel 1. For information on the interfaces see manuals socket interface [5] and packet interface [6]

Chapter 6 Application interface 78 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

6.7.1 Register for frame indications service

This service enables the application to receive Ethernet frame indications from the protocol stack.

Figure 21. Sequence diagram for ECAT_EOE_REGISTER_FOR_FRAME_INDICATIONS_REQ/CNF packets

NOTE This service should not be used if the EthIntf is mapped to the second channel or if direct access via
Drv_Edd within LOM is used or when a TCP stack is included in the firmware. Also, this service should
not be used if the Lwip stack or the Socket API are included within the firmware. If you nevertheless use
it, the LwIP stack or TCP functionality might not work correctly.

6.7.1.1 Register for frame indications request packet

The application has to send this request packet to the EtherCAT Slave protocol stack in order to register itself at the
EtherCAT EoE stack for receiving indications (ECAT_EOE_FRAME_RECEIVED_IND packets) each time an EoE Ethernet
frame is received by the EtherCAT EoE stack.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B76

Table 92. ECAT_EOE_REGISTER_FOR_FRAME_INDICATIONS_REQ_T

6.7.1.2 Register for frame indications confirmation packet

The stack will send this confirmation packet to the application after registering for receiving Ethernet frame indications.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B77

Table 93. ECAT_EOE_REGISTER_FOR_FRAME_INDICATIONS_CNF_T

6.7.2 Unregister from frame indications service

This service disables the application from receiving Ethernet frame indications.

Figure 22. Sequence diagram for ECAT_EOE_UNREGISTER_FROM_FRAME_INDICATIONS_REQ/CNF packets

Chapter 6 Application interface 79 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

NOTE This service should not be used if the EthIntf is mapped to the second channel or if direct access via
Drv_Edd within LOM is used.

6.7.2.1 Unregister from frame indications request packet

The stack will send this confirmation packet to the application after unregistering from receiving Ethernet frame
indications.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B79

Table 94. ECAT_EOE_UNREGISTER_FROM_FRAME_INDICATIONS_REQ_T

6.7.2.2 Unregister from frame indications confirmation packet

The application has to send this request packet to the EtherCAT Slave protocol stack in order to disable exception of
Ethernet frame indications.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B78

Table 95. ECAT_EOE_UNREGISTER_FROM_FRAME_INDICATIONS_CNF_T

6.7.3 Ethernet send frame service

This service allows sending Ethernet frames via EoE.

NOTE This service should not be used if the EthIntf is mapped to the second channel or if direct access via
Drv_Edd within LOM is used.

The parameter usFlags is a bit mask which is used to specify whether some fields within the current packet is valid.
Currently the following bits are defined:

Bit Name Description

D2-D15 Reserved

D1 ECAT_EOE_FRAME_FLAG_TIME_VALID The timestamp in the current packet is valid.

D0 ECAT_EOE_FRAME_FLAG_TIME_REQUEST On requests, the master requests the actual transmission
time of the frame when it is sent on the slave itself

Table 96. Meaning of bit mask usFlags

6.7.3.1 Ethernet send frame request packet

The ECAT_EOE_SEND_FRAME_REQ request allows your application to send Ethernet frames via EoE. Use the field
abData to store the contents of the Ethernet frame to be sent.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 22+n

ulSta uint32_t 0

ulCmd uint32_t 0x1B72

Chapter 6 Application interface 80 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

tData ECAT_EOE_SEND_FRAME_REQ_DATA_T

usFlags uint16_t bit mask specifying whether some fields within the current packet are valid see bit
mask usFlags

usPortNo uint16_t determines the specific port to be used. port value range 1 to 15, value 0 means no
specific port is used.

ulTimestampNs uint32_t timestamp based on the EtherCAT system time

abDstMacAddr[6] uint8_t destination MAC address of the frame to be sent through EoE from the slave

abSrcMacAddr[6] uint8_t source MAC address of frame received to be sent through EoE from the slave, refers
to the origin of the Ethernet frame.

usEthType uint16_t Ethernet type of the EoE frame to be sent (in network byte order)

abData[ECAT_EOE_FRA
ME_DATA_SIZE] uint8_t field containing the data of the Ethernet frame (1504 bytes)

Table 97. ECAT_EOE_SEND_FRAME_REQ_T

6.7.3.2 Ethernet send frame confirmation packet

The stack will send this confirmation packet to the application after receiving an ECAT_EOE_SEND_FRAME_REQ
request.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 8

ulSta uint32_t 0

ulCmd uint32_t 0x1B73

tData ECAT_EOE_SEND_FRAME_CNF_DATA_T

usFlags uint16_t Flags, see table Meaning of bit mask usFlags

ulTimestampNs uint32_t EtherCAT system time of frame being received at destination, only valid if
ECAT_EOE_FRAME_FLAG_TIME_VALID is set in usFlags.

usFrameLen uint16_t

Table 98. ECAT_EOE_SEND_FRAME_CNF_T

6.7.4 Ethernet frame received service

This indication will be sent to your application if both of the following conditions are fulfilled:

1. The application has registered for it by sending an ECAT_EOE_REGISTER_FOR_FRAME_INDICATIONS_REQ
request to the stack.

2. A new Ethernet frame is received via EoE.

The contents of the Ethernet frame can be retrieved by accessing the field abData.

Figure 23. Sequence diagram EoE frame reception

NOTE It is necessary to register the application by using the Register for frame indications service in order to
receive an Ethernet frame received indication.

NOTE This service should not be used if the EthIntf is mapped to the second channel or if direct access via
Drv_Edd within LOM is used.

Chapter 6 Application interface 81 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

6.7.4.1 Ethernet frame received indication packet

The stack will send this indication packet to the application.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 22+n

ulSta uint32_t 0

ulCmd uint32_t 0x1B70

tData ECAT_EOE_FRAME_RECEIVED_IND_DATA_T

usFlags uint16_t bit mask specifying whether some fields within the current packet are valid Meaning
of bit mask usFlags

usPortNo uint16_t determines the specific port to be used. port value range 1 to 15, value 0 means no
specific port is used.

ulTimestampNs uint32_t timestamp based on the EtherCAT system time

abDstMacAddr[6] uint8_t destination MAC address of the frame to be sent through EoE from the slave

abSrcMacAddr[6] uint8_t source MAC address of frame received to be sent through EoE from the slave, refers
to the origin of the Ethernet frame.

usEthType uint16_t Ethernet type of the EoE frame to be sent (in network byte order)

abData[ECAT_EOE_FRA
ME_DATA_SIZE] uint8_t field containing the data of the Ethernet frame (1504 bytes)

Table 99. ECAT_EOE_FRAME_RECEIVED_IND_T

6.7.4.2 Ethernet frame received response packet

The application has to send this response packet to the protocol stack after receiving an
ECAT_EOE_FRAME_RECEIVED_IND indication packet.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 8

ulSta uint32_t 0

ulCmd uint32_t 0x1B71

tData ECAT_EOE_FRAME_RECEIVED_RES_DATA_T

usFlags uint16_t Flags, see table Meaning of bit mask usFlags

ulTimestampNs uint32_t EtherCAT system time of frame being received at destination, only valid if
ECAT_EOE_FRAME_FLAG_TIME_VALID is set in usFlags.

usFrameLen uint16_t

Table 100. ECAT_EOE_FRAME_RECEIVED_RES_T

6.7.5 Register for IP parameter indications service

This service is used for registering an application for receiving the following indications:

■ Set IP parameter service
■ Get IP parameter service

NOTE Only one application can use this service.

Chapter 6 Application interface 82 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Figure 24. Sequence diagram for ECAT_EOE_REGISTER_FOR_IP_PARAM_INDICATIONS_REQ/CNF

6.7.5.1 Register for IP parameter indications request

The application can register at the notify queue for receiving indications (ECAT_EOE_SET_IP_PARAM_IND and
ECAT_EOE_GET_IP_PARAM_IND packets) each time the master requests to change IP or MAC address parameters.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B7A

Table 101. ECAT_EOE_REGISTER_FOR_IP_PARAM_INDICATIONS_REQ_T

6.7.5.2 Register for IP parameter indications confirmation

The stack will send this confirmation packet to the application after registering for IP parameter indications

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B7B

Table 102. ECAT_EOE_REGISTER_FOR_IP_PARAM_INDICATIONS_CNF_T

6.7.6 Unregister from IP parameter Indications service

This service is used for registering an application for receiving the following indications:

■ Set IP parameter service
■ Get IP parameter service

Figure 25. Sequence diagram for ECAT_EOE_UNREGISTER_FOR_IP_PARAM_INDICATIONS_REQ/CNF

6.7.6.1 Unregister from IP parameter indications request packet

The application can unregister at the queue from the reception of indications (ECAT_EOE_SET_IP_PARAM_IND
packets) each time the master requests to change IP or MAC address parameters.

Variable Type Description

tHead HIL_PACKET_HEADER_T

Chapter 6 Application interface 83 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B7C

Table 103. ECAT_EOE_UNREGISTER_FROM_IP_PARAM_INDICATIONS_REQ_T

6.7.6.2 Unregister from IP parameter indications confirmation packet

The stack will send this confirmation packet to the application after unregistering from receiving IP parameter indications.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B7D

Table 104. ECAT_EOE_UNREGISTER_FROM_IP_PARAM_INDICATIONS_CNF_T

6.7.7 Set IP parameter service

This service is used for indicating that the EtherCAT master intends to set new IP/MAC parameters. In order to receive
Set IP parameter Indications, the following requirements have to be fulfilled:

■ It is necessary to register the application by using the Register for IP parameter indications service in order to receive
an IP parameter Written By Master indication.

■ The EtherCAT Slave stack is at least in Pre-Operational state.
■ The master currently intends to set new IP/MAC parameters.

Figure 26. Set IP parameter service

The parameter ulFlags is a bit mask which is used to specify which fields within the packets are valid. Currently the
following bits are defined:

Chapter 6 Application interface 84 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Value Name

Description
0x00000001 ECAT_EOE_SET_IP_PARAM_MAC_ADDRESS_INCLUDED

If set, field abMacAddr provides a valid MAC address.

0x00000002 ECAT_EOE_SET_IP_PARAM_IP_ADDRESS_INCLUDED

If set, field abIpAddr provides a valid IP address.

0x00000004 ECAT_EOE_SET_IP_PARAM_SUBNET_MASK_INCLUDED

If set, field abSubnetMask provides a valid subnet mask.

0x00000008 ECAT_EOE_SET_IP_PARAM_DEFAULT_GATEWAY_INCLUDED

If set, field abDefaultGateway provides a valid default gateway

0x00000010 ECAT_EOE_SET_IP_PARAM_DNS_SERVER_IP_ADDR_INCLUDED

If set, field abDnsServerIpAddress provides a valid DNS Server IP Address

0x00000020 ECAT_EOE_SET_IP_PARAM_DNS_NAME_INCLUDED

If set, field abDnsName provides a valid DNS name

Table 105. Bitmask for parameter ulFlag of ECAT_EOE_SET_IP_PARAM_IND_DATA_T

6.7.7.1 Set IP parameter indication packet

These are the IP parameters written by master. This indication will be sent to your application if both of the following
conditions are fulfilled:

1. The application has registered for it by sending a ECAT_EOE_REGISTER_FOR_IP_PARAM_INDICATIONS_REQ
packet to the stack

2. The EtherCAT Master intends to set new IP/MAC parameters (and has sent an according request to the EtherCAT
Slave) The values are stored in IP network byte order.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B7E

tData ECAT_EOE_SET_IP_PARAM_IND_DATA_T

ulFlags uint32_t The single bits determine which of the subsequent fields are valid, see bit mask
ulFlags

abMacAddr[6] uint8_t contains the MAC address to be set - only valid if flag is set:
ECAT_EOE_SET_IP_PARAM_MAC_ADDRESS_INCLUDED

abIpAddr[4] uint8_t contains the IP address to be set - only valid if flag is set:
ECAT_EOE_SET_IP_PARAM_IP_ADDRESS_INCLUDED

abSubnetMask[4] uint8_t contains the subnet mask to be set - only valid if flag is set:
ECAT_EOE_SET_IP_PARAM_SUBNET_MASK_INCLUDED

abDefaultGateway[4] uint8_t
contains the default gateway to be set - only valid if flag is set:

ECAT_EOE_SET_IP_PARAM_DEFAULT_GATEWAY_INCLUDED

abDnsServerIpAddress[
4] uint8_t contains the default gateway to be set - only valid if flag is set:

ECAT_EOE_SET_IP_PARAM_DNS_SERVER_IP_ADDR_INCLUDED s

abDnsName[32] char contains the DNS name to be set - only valid if flag is set:
ECAT_EOE_SET_IP_PARAM_DNS_NAME_INCLUDED

Table 106. ECAT_EOE_SET_IP_PARAM_IND_T

6.7.7.2 Set IP parameter response packet

The application has to send this response packet to the protocol stack on reception of an IP parameter indication. The
response packet does not have any parameters.

Chapter 6 Application interface 85 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B7F

Table 107. ECAT_EOE_SET_IP_PARAM_RES_T

6.7.8 Get IP parameter service

This service is used for indicating that the master wants to retrieve the current IP/MAC parameters. In order to receive
Get IP parameter Indications, the following requirements have to be fulfilled:

■ It is necessary to register the application by using the Register for IP parameter indications service in order to receive
an IP parameter Written By Master indication.

■ The EtherCAT Slave stack is at least in Pre-Operational state.

Figure 27. Get IP parameter service

The parameter ulFlags is a bit mask which is used to specify which fields within the packets are valid. Currently the
following bits are defined:

Value Name

Description
0x00000001 ECAT_EOE_GET_IP_PARAM_MAC_ADDRESS_INCLUDED

If set, field abMacAddr provides a valid MAC address.

0x00000002 ECAT_EOE_GET_IP_PARAM_IP_ADDRESS_INCLUDED

If set, field abIpAddr provides a valid IP address.

0x00000004 ECAT_EOE_GET_IP_PARAM_SUBNET_MASK_INCLUDED

If set, field abSubnetMask provides a valid subnet mask.

0x00000008 ECAT_EOE_GET_IP_PARAM_DEFAULT_GATEWAY_INCLUDED

If set, field abDefaultGateway provides a valid default gateway

0x00000010 ECAT_EOE_GET_IP_PARAM_DNS_SERVER_IP_ADDR_INCLUDED

If set, field abDnsServerIpAddress provides a valid DNS Server IP Address

0x00000020 ECAT_EOE_GET_IP_PARAM_DNS_NAME_INCLUDED

If set, field abDnsName provides a valid DNS name

Chapter 6 Application interface 86 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Table 108. Bitmask for parameter ulFlag of ECAT_EOE_GET_IP_PARAM_IND_DATA_T

6.7.8.1 Get IP parameter indication packet

This packet indicates that the master wants to retrieve the current IP/MAC parameters. For receiving the indication, the
application has to register via the request. The indication packet does not have any parameters:

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1B50

Table 109. ECAT_EOE_GET_IP_PARAM_IND_T

6.7.8.2 Get IP parameter response packet

The application has to send this response packet to the protocol stack on reception of the parameter read by master
indication. This response has to be sent from the application to the stack.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 58

ulSta uint32_t 0

ulCmd uint32_t 0x1B51

tData ECAT_EOE_GET_IP_PARAM_RES_DATA_T

ulFlags uint32_t The single bits determine which of the subsequent fields are valid, see bit mask
ulFlags

abMacAddr[6] uint8_t contains the MAC address to be set - only valid if following flag is set:
ECAT_EOE_SET_IP_PARAM_MAC_ADDRESS_INCLUDED

abIpAddr[4] uint8_t contains the IP address to be set - only valid if following flag is set:
ECAT_EOE_SET_IP_PARAM_IP_ADDRESS_INCLUDED

abSubnetMask[4] uint8_t contains the subnet mask to be set - only valid if following flag is set:
CAT_EOE_SET_IP_PARAM_SUBNET_MASK_INCLUDED

abDefaultGateway[4] uint8_t
contains the default gateway to be set - only valid if following flag is set:

ECAT_EOE_SET_IP_PARAM_DEFAULT_GATEWAY_INCLUDED

abDnsServerIpAddress[
4] uint8_t contains the default gateway to be set - only valid if following flag is set:

ECAT_EOE_SET_IP_PARAM_DNS_SERVER_IP_ADDR_INCLUDED s

abDnsName[32] char contains the DNS name to be set - only valid if following flag is set:
ECAT_EOE_SET_IP_PARAM_DNS_NAME_INCLUDED

Table 110. ECAT_EOE_GET_IP_PARAM_RES_T

6.8 File Access over EtherCAT (FoE)

Service Command Command Code

Set FoE options service ECAT_FOE_SET_OPTIONS_REQ 0x1BD6

ECAT_FOE_SET_OPTIONS_CNF 0x1BD7

FoE register file service ECAT_FOE_REGISTER_FILE_INDICATIONS_REQ 0x9500

ECAT_FOE_REGISTER_FILE_INDICATIONS_CNF 0x9501

FoE unregister file service ECAT_FOE_UNREGISTER_FILE_INDICATIONS_REQ 0x9502

ECAT_FOE_UNREGISTER_FILE_INDICATIONS_CNF 0x9503

FoE write file service ECAT_FOE_WRITE_FILE_IND 0x9510

ECAT_FOE_WRITE_FILE_RES 0x9511

Chapter 6 Application interface 87 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Service Command Command Code

FoE read file service ECAT_FOE_READ_FILE_IND 0x9512

ECAT_FOE_READ_FILE_RES 0x9513

FoE file written Service ECAT_FOE_FILE_WRITTEN_IND 0x9520

ECAT_FOE_FILE_WRITTEN_RES 0x9521

FoE File Write Aborted Service ECAT_FOE_FILE_WRITE_ABORTED_IND 0x9530

ECAT_FOE_FILE_WRITE_ABORTED_RES 0x9531

Table 111. Overview over the FoE Packets of the EtherCAT Slave Stack

FoE and similar file operations only in states without active data exchange

FoE and other file operations on the local file system (FAT) may only be performed when the EtherCAT Slave stack is in
states without active data exchange. This means:

NOTE Only use file transfer (FoE), if the EtherCAT Slave device is either in BOOT state or PreOP state.

The file system of the EtherCAT Slave stack is intended for storing firmware and configuration files only. Do not store any
other information there.

6.8.1 Set FoE options service

The service is used to define restrictions in file download via FoE. For instance, the firmware download can be rejected in
case of not matching protocol class or communication class. Options request does not work on virtual files (see FoE
register file service).

Value Name

Description
0x00000001 ECAT_FOE_SET_OPTIONS_CHECK_PROTOCOL_CLASS

If set, downloads with mismatching protocol class will be rejected. Example: protocol class != EtherCAT

0x00000002 ECAT_FOE_SET_OPTIONS_CHECK_COMMUNICATION_CLASS

If set, downloads with mismatching communication class will be rejected. Example: comm class != Slave

0x00000004 ECAT_FOE_SET_OPTIONS_REJECT_NON_NXF_FILE_DOWNLOADS

If set, other file downloads than *.nxf file downloads will be rejected.

0x00000008 ECAT_FOE_SET_OPTIONS_CHECK_VARIANT

If set, downloads with mismatching variant will be rejected. Example: tDeviceInfo.usReserved !=
usExpectedBuildDeviceVariant

0x00000010 ECAT_FOE_SET_OPTIONS_CHECK_DEVICE_CLASS

If set, downloads with mismatching device class will be rejected. Example: device class != netX 500

Table 112. Filter Flags for ECAT_FOE_SET_OPTIONS_REQ_DATA_T

6.8.1.1 Set FoE options request packet

The service is used to define restrictions in filedownload.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 6

ulSta uint32_t 0

ulCmd uint32_t 0x1BD6

tData ECAT_FOE_SET_OPTIONS_REQ_DATA_T

ulOptions uint32_t Options for restricting file transfer, see ulOptions Flags

usExpectedBuildDevice
Variant uint16_t Expected device variant for use of customer devices

Table 113. ECAT_FOE_SET_OPTIONS_REQ_T

Chapter 6 Application interface 88 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

6.8.1.2 Set FoE options confirmation packet

It confirms that the settings for file download have been changed. The confirmation packet mirrors the data from request.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1BD7

tData ECAT_FOE_SET_OPTIONS_CNF_DATA_T

ulOptions uint32_t Options for restricting file transfer, see ulOptions Flags

usExpectedBuildDevice
Variant uint16_t Expected device variant for use of customer devices

Table 114. ECAT_FOE_SET_OPTIONS_CNF_T

6.8.2 FoE register file service

The application has to send the request packet to the EtherCAT Slave protocol stack in order to register for indications
which occur when a file operation (up- or download) is initiated from the EtherCAT Master side. Depending on the value

bIndicationType, the application gets notifications for different events.
bIndicationType is a value allowing to set the registration type of the registered file as follows:

Value Name

Description
1 ECAT_FOE_INDICATION_TYPE_FILE_WRITTEN

If set, the stack sends an indication to the application if the file with the registered name was successfully written to the
file system.

2 ECAT_FOE_INDICATION_TYPE_ANY_FILE_WRITTEN

If set, the stack sends an indication to the application for every file that is written successfully to the filesystem

3 ECAT_FOE_INDICATION_TYPE_VIRTUAL_FILE

The packet allows handling read and write requests to registered files, which are not stored on the volume (e.g.
SYSVOLUME) but are provided by the registered application. If set, the stack sends indications to the application if the
file with the registered name will be read or written. (Note: Options requests does not work on virtual files)

4 ECAT_FOE_INDICATION_TYPE_ANY_VIRTUAL_FILE

This flag is only available for LOM, not for LFW! The packet allows the read and write handling requests to any files,
which are not stored on the volume (e.g. SYSVOLUME) but are provided by the registered application. If set, the stack
sends indications to the application if the application reads or writes a file. (Note: Options requests do not work on virtual
files, used for rcX File Handler)

5 ECAT_FOE_INDICATION_TYPE_ANY_FILE_WRITE_ABORTED

If set, the stack sends an indication to the application for every file on which the write process is aborted

Table 115. Filter Flags for bIndicationType of ECAT_FOE_REGISTER_FILE_INDICATIONS_

Indications initiated by FoE Register File Indications

If the master side initiates a file operation (like up- or download) and the application is registered, the stack will receive the
following indication packets that will have to be answered with the related response.

Chapter 6 Application interface 89 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Packet Relates to
bIndication
Type

Explanation

ECAT_FOE_WRITE_FILE_IND 3,4 Contains file name on first indication and only data on the

following indications

Example:
First indication with file name: "ABCDEF" tHead.ulLen = 6

abData = {0x41, 0x42, 0x43, 0x44, 0x45, 0x46 }

Following indications with data
tHead.ulLen = 10 abData = { 0x41, 0x42, 0x43, 0x44, 0x00,
0x44, 0x44, 0x44, 0x55, 0x66 }

ECAT_FOE_WRITE_FILE_RES 3,4 ulLen = 0, no data part

ECAT_FOE_READ_FILE_IND 3,4 Contains abFilename, ulPassword, and
ulMaximumByteSizeOfFragment on first indication and no
data part on the following indications (ulLen = 0)

ECAT_FOE_READ_FILE_RES 3, 4 After file could be accessed with filename, send
abData[ulLen]

ECAT_FOE_FILE_WRITTEN_IND 1, 2 Contains file name on indication

ECAT_FOE_FILE_WRITTEN_RES 1, 2 ulLen = 0, no data part

ECAT_FOE_FILE_WRITE_ABORTED_IND 5 Contains file name on indication

ECAT_FOE_FILE_WRITE_ABORTED_RES 5 ulLen = 0, no data part

Table 116. Overview over the indications of FoE register file indications:

The indication packets for request and confirmation are put together in a packet union for easy handling. There is no
constraint to use it, the packets can also be sent separately.

Variable Type

Description
tHead HIL_PACKET_HEADER_T

tReq ECAT_FOE_REGISTER_FILE_INDICATIONS_REQ_T

tCnf ECAT_FOE_REGISTER_FILE_INDICATIONS_CNF_T

Table 117. ECAT_FOE_REGISTER_FILE_INDICATIONS_PCK_T

6.8.2.1 FoE register file indications request packet

The application has to send the request packet to the EtherCAT Slave protocol stack in order to register for indications

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 1 + n

ulSta uint32_t 0

ulCmd uint32_t 0x9500

tData ECAT_FOE_REGISTER_FILE_INDICATIONS_REQ_DATA_T

bIndicationType uint8_t controls what type of indication is to be registered, see flags bIndicationType

abFilename[ECAT_FOE_
MAX_FILE_NAME_LENG
TH]

char
contains the NUL-terminated file name to be registered for indications, max length
256

Table 118. ECAT_FOE_REGISTER_FILE_INDICATIONS_REQ_T

6.8.2.2 FoE register file indications confirmation packet

The confirmation packet confirms the registration. The data part of the confirmation packet contains the same data as the
registration request packet.

Chapter 6 Application interface 90 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 1 + n

ulSta uint32_t 0

ulCmd uint32_t 0x9501

tData ECAT_FOE_REGISTER_FILE_INDICATIONS_CNF_DATA_T

bIndicationType uint8_t controls what type of indication is to be registered, see flag bIndicationType

abFilename[ECAT_FOE_
MAX_FILE_NAME_LENG
TH]

char
contains the NUL-terminated file name to be registered for indications, max length
256

Table 119. ECAT_FOE_REGISTER_FILE_INDICATIONS_CNF_T

6.8.3 FoE unregister file service

The application has to send this request packet to the EtherCAT Slave protocol stack in order to unregister from formerly
registered indications on file operations (up- or download from the master side). Depending on the value bIndicationType,
the application does not get notifications for different events anymore. The bitmask for bIndicationType is the same as
used for registration.

The indication packets for request and confirmation are put together in a packet union for easy handling. There is no
constraint to use it, the packets can also be sent separately.

Variable Type

Description
tHead HIL_PACKET_HEADER_T

tReq ECAT_FOE_UNREGISTER_FILE_INDICATIONS_REQ_T

tCnf ECAT_FOE_UNREGISTER_FILE_INDICATIONS_CNF_T

Table 120. ECAT_FOE_UNREGISTER_FILE_INDICATIONS_PCK_T

6.8.3.1 FoE register file indications request packet

The application has to send the request packet to the EtherCAT Slave protocol stack in order to unregister for indications

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 1 + n

ulSta uint32_t 0

ulCmd uint32_t 0x9502

tData ECAT_FOE_UNREGISTER_FILE_INDICATIONS_REQ_DATA_T

bIndicationType uint8_t controls what type of indication is to be registered, see bIndicationType

abFilename[ECAT_FOE_
MAX_FILE_NAME_LENG
TH]

char
contains the NUL-terminated file name to be registered for indications, max length
256

Table 121. ECAT_FOE_UNREGISTER_FILE_INDICATIONS_REQ_T

6.8.3.2 FoE unregister file indications confirmation packet

The confirmation packet confirms the unregistration.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

Chapter 6 Application interface 91 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x9503

Table 122. ECAT_FOE_UNREGISTER_FILE_INDICATIONS_CNF_T

6.8.4 FoE write file service

In order to receive FoE write file indications, the application must have registered itself for receiving these using the
service FoE register file indications with bIndicationType either set to ECAT_FOE_INDICATION_TYPE_VIRTUAL_FILE
(=3) or to ECAT_FOE_INDICATION_TYPE_ANY_VIRTUAL_FILE (=4).

6.8.4.1 FoE write file indication packet

This indication packet informs the application about an incoming request to write or download a file to the file system via

FoE. It initiates a series of packets to transfer the file data from the EtherCAT Master to the EtherCAT Slave device.
For each new packet being received by the EtherCAT Slave stack, one more indication packet is sent to the application.

The meaning of the data depends on the sequence of reception:

■ The first segment contains filename and password in abData. The password has to be checked for correctness.
■ The last segment is signaled when ulExt.Seq is set to LAST, it can have zero bytes of data.
■ The segments in-between are signaled when ulExt.Seq is set to MIDDLE.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 1024

ulSta uint32_t 0

ulCmd uint32_t 0x9510

tData ECAT_FOE_WRITE_FILE_IND_DATA_T

abData[1024] uint8_t may be larger depending on foreign queue size
first packet, following packets and last differ, see main description

Table 123. ECAT_FOE_WRITE_FILE_IND_T

6.8.4.2 FoE write file response packet

Every time the application receives an FoE write file indication from the EtherCAT Master, it should send an
ECAT_FOE_WRITE_FILE_RES packet to the stack as response. /n Positive response or negative response are explained
after packet description

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 1024

ulSta uint32_t 0

ulCmd uint32_t 0x9511

tData ECAT_FOE_WRITE_FILE_RES_DATA_T

abText[1024] uint8_t only valid when packet status != 0

Table 124. ECAT_FOE_WRITE_FILE_RES_T

Positive response

If the data have been received correctly, ulSta should be set to 0. ulLen should also be set to 0. In this case, abText is not
needed.

Chapter 6 Application interface 92 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Figure 28. ECAT_FOE_WRITE_FILE_RES – FoE write file response - Positive response

Negative response

If an error occurred on reception of the FoE Write File Indication, the application should send an
ECAT_FOE_WRITE_FILE_RES packet with ulSta being set to a non-zero value indicating an applicable error code. In this
case, the variable abText should contain an informative text on the current problem (up to 1024 characters long). ulLen
should be set to the length of abText (i.e. number of characters including spaces then.

Figure 29. ECAT_FOE_WRITE_FILE_RES – FoE write file response - Negative response

6.8.5 FoE read file service

In order to receive FoE Read File Indications, the application must have registered itself for receiving these using the
service FoE register file indications with bIndicationType either set to ECAT_FOE_INDICATION_TYPE_VIRTUAL_FILE
(=3) or to ECAT_FOE_INDICATION_TYPE_ANY_VIRTUAL_FILE (=4).

6.8.5.1 FoE read file indication packet

This indication packet informs the application about an incoming request to read or upload a file from the file system of
the device via FoE. It initiates a series of packets to transfer the file data from the EtherCAT Slave device to the EtherCAT

Master.
The indication supplies the following information relevant for the response:

Chapter 6 Application interface 93 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

■ Does a file with the requested filename really exist on the filesystem of the device.
■ Is the password correct?
■ Can the file be accessed?
■ Is the EtherCAT Slave in the correct mode of operation (i.e. bootstrap mode)?
■ Does the hardware support the downloaded firmware?

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 8+n

ulSta uint32_t 0

ulCmd uint32_t 0x9512

tData ECAT_FOE_READ_FILE_IND_DATA_T

ulMaximumByteSizeOfF
ragment uint32_t each packet fragment that is not marked LAST has to use this amount of data in its

response handling on MIDDLE segments

ulPassword uint32_t This optional parameter contains the password of the file to be read which the
application has to check for correctness, only valid on first fragment

abFilename[ECAT_FOE_
MAX_FILE_NAME_LENG
TH]

uint8_t
This parameter contains the name of the file to be transfered which the application
has to check for existance, only valid on first fragment

Table 125. ECAT_FOE_READ_FILE_IND_T

6.8.5.2 FoE read file indication packet

This indication packet informs the application about an incoming request to read or upload a file from the file system of
the device via FoE. It initiates a series of packets to transfer the file data from the EtherCAT Slave device to the EtherCAT

Master.
The indication supplies the following information relevant for the response:

■ Does a file with the requested filename really exist on the filesystem of the device.
■ Is the password correct?
■ Can the file be accessed?
■ Is the EtherCAT Slave in the correct mode of operation (i.e. bootstrap mode)?
■ Does the hardware support the downloaded firmware?

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0…1600 for Seq FIRST or MIDDLE, 0…1599 for Seq LAST, First and Middle equal
ulMaximumByteSizeOfFragment

ulSta uint32_t 0

ulCmd uint32_t 0x9513

ulExt uint32_t ulExt.Seq = FIRST, MIDDLE or LAST

tData ECAT_FOE_READ_FILE_RES_DATA_T

abData[1600] uint8_t

Table 126. ECAT_FOE_READ_FILE_RES_T

Negative response If not all of the conditions to be tested after receiving the indication are fulfilled, the application has to
send a negative response with ulSta set to an appropriate error code (). The sequence is shown in the following figure:

Chapter 6 Application interface 94 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Figure 30. ECAT_FOE_READ_FILE_RES – FoE read file response - Negative response

The following error codes are available:

Code Meaning Description

0x8000 Not defined See error text.

0x8001 Not found The requested file could not be found on the server.

0x8002 Access denied Read or right access not allowed.

0x8003 Disk full Disk to store the file is full or memory allocation exceeded.

0x8004 Illegal operation Illegal FoE operation, e.g. invalid service identifier

0x8005 Packet number wrong FoE packet number invalid

0x8006 Already exists The requested file already exists

0x8007 No user No user

0x8008 Bootstrap only FoE only supported in bootstrap mode

0x8009 Not bootstrap File may not be accessed in bootstrap state

0x800A No rights Password invalid

0x800B Program error Generic programming error

0x800C Checksum error A checksum included in the file is invalid.

0x800D Firmware does not fit for
hardware

The hardware does not support the downloaded firmware.

0x8010 File header does not exist Missing file header or error in file header

0x8011 Flash problem Flash memory cannot be accessed

Table 127. FoE Read File Res Error Codes

Positive response

If all conditions are fulfilled, the file transfer can begin. Files will be transfered in segments. The following rules apply:

■ For each new segment of the file to be transfered, the application is expected to send one more response packet to the
EtherCAT Slave stack.

■ For the first segment, ulExt.Seq is set to FIRST. The segment transfers as many bytes as has been specified within the
variable ulMaximumByteSizeOfFragment of the indication packet.

■ For the center segments, ulExt.Seq is set to MIDDLE. Set ulLen to 4. The segment transfers as many bytes as has been
specified within the variable ulMaximumByteSizeOfFragment of the indication packet.

■ For the last segment, ulExt.Seq is set to LAST. The number of bytes to be transferred is less than for a center segment
(ulLen < ulMaximumByteSizeOfFragment). It can have zero bytes of data. When the data of the last segment exactly fits
into the mailbox, this segment is transferred as center segment (ulExt.Seq is set to MIDDLE). Subsequently, the last
segment is transfered with zero bytes of data.

The sequence of data transfer is as follows:

Chapter 6 Application interface 95 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Figure 31. ECAT_FOE_READ_FILE_RES – FoE read file response - Positive response

6.8.6 FoE file written Service

In order to receive FoE file written Indications, the application must have registered itself for receiving these using the
service FoE register file service with bIndicationType either set to

■ ECAT_FOE_INDICATION_TYPE_FILE_WRITTEN (=1) or to
■ ECAT_FOE_INDICATION_TYPE_ANY_FILE_WRITTEN (=2).

The indication packets for request and confirmation are put together in a packet union for easy handling. There is no
constraint to use it, the packets can also be sent separately.

Variable Type

Description
tHead HIL_PACKET_HEADER_T

tInd ECAT_FOE_FILE_WRITTEN_IND_T

tRes ECAT_FOE_FILE_WRITTEN_RES_T

Table 128. ECAT_FOE_FILE_WRITTEN_PCK_T

6.8.6.1 FoE file written indication packet

If the FoE write file service has successfully transfered a complete file to the file system of the device, the EtherCAT Slave
stack will send this indication in order to inform the application about completion of the transfer. The name of file having
been written is provided in variable abFilename[].

Chapter 6 Application interface 96 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t n

ulSta uint32_t 0

ulCmd uint32_t 0x9520

tData ECAT_FOE_FILE_WRITTEN_IND_DATA_T

abFilename[ECAT_FOE_
MAX_FILE_NAME_LENG
TH]

uint8_t
Name of file having been written

Table 129. ECAT_FOE_FILE_WRITTEN_IND_T

6.8.6.2 FoE file written response packet

The application should acknowledge the reception of an FoE File Written Indication by sending this response packet. The
FoE File Written Response packet does not have any data part.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x9521

Table 130. ECAT_FOE_FILE_WRITTEN_RES_T

6.8.7 FoE File Write Aborted Service

In order to receive FoE File Written Indications, the application must have registered itself for receiving these using the
service FoE register file service with bIndicationType equal to
ECAT_FOE_INDICATION_TYPE_ANY_FILE_WRITE_ABORTED (=5).

6.8.7.1 FoE File Write Aborted Indication packet

If the FoE Write File Service has aborted the transfer of a file to the file system of the device, the EtherCAT Slave stack
will send this indication in order to inform the application about the abort of the transfer. The name of the file whose
transfer has been aborted is provided in variable abFilename[].

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t n

ulSta uint32_t 0

ulCmd uint32_t 0x9530

tData ECAT_FOE_FILE_WRITE_ABORTED_IND_DATA_T

abFilename[ECAT_FOE_
MAX_FILE_NAME_LENG
TH]

uint8_t
Name of file whose transfer has been aborted

Table 131. ECAT_FOE_FILE_WRITE_ABORTED_IND_T

6.8.7.2 FoE File Write Aborted response packet

The application should acknowledge the reception of an FoE File Write Aborted Indication by sending this response
packet. The FoE File Write Aborted Response packet does not have any data part.

Variable Type Description

tHead HIL_PACKET_HEADER_T

Chapter 6 Application interface 97 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x9531

Table 132. ECAT_FOE_FILE_WRITE_ABORTED_RES_T

6.9 ADS over EtherCAT (AoE)

The EtherCAT Slave protocol stack supports ADS over EtherCAT (AoE). ADS (Automation Device Specification) is a
protocol defined within document “EtherCAT Protocol Enhancements. ETG.1020” [11] which can be optionally used to

provide multiple object dictionaries when implementing a modular device according to ETG.5001.
Therefore, the EtherCAT Slave protocol stack provides the possibility to work with additional object dictionaries, which
can be uniquely identified by a port number in the range 0…65534.

NOTE Within AoE, the special port number 65535 addresses the original object dictionary of ODV3.

The application has to register these additional object dictionaries at the AoE component of the EtherCAT Slave protocol
stack. To do so, use the AoE register port Request (ECS_AOE_REGISTER_PORT_REQ). If you register an additional
object dictionary using this request, then the stack will send the necessary indications to the application. As the

application will have to process these indications, you will have to adapt your application accordingly.
The indications to be processed include:

■ ODV3_READ_OBJECT_IND/RES
■ ODV3_WRITE_OBJECT_IND/RES
■ ODV3_GET_OBJECT_INFO_IND/RES
■ ODV3_GET_OBJECT_LIST_IND/RES
■ ODV3_GET_SUBOBJECT_INFO_IND/RES
■ ODV3_GET_OBJECT_ACCESS_INFO_REQ

There are two additional indications, which are only sent to the application in case that an additional object dictionary is
provided via the AoE component of the EtherCAT Slave protocol stack

■ ODV3_READ_ALL_BY_INDEX_IND/RES
■ ODV3_WRITE_ALL_BY_INDEX_IND/RES

The AoE port number to which an indication belongs is stored within the lowest 16 bits of variable ulId in the indication
packet. This allows a simple identification during processing the indications. If the stack detects an unregistered AoE port

number, the protocol stack will issue an appropriate error message.
To distinguish whether the received object is an AoE object or was sent from another object dictionary instance (e.g. from
CoE object dictionary), can be done by setting the ulSrc parameter in the registration packet
(ECS_AOE_REGISTER_PORT_REQ). The value used there will appear in the ulDest field of the received packets, the

ulSrcID field of the received packets holds the port number.
If an object dictionary is no longer used, it should be unregistered with the corresponding AoE unregister port Request
(ECS_AOE_UNREGISTER_PORT_REQ). Unregistering causes the indications no longer to be sent. In this case, handling

of indications is no longer necessary.
The following table gives an overview on the available AoE packets:

Service Command Command Code

AoE register port service ECS_AOE_REGISTER_PORT_REQ 0x8D00

ECS_AOE_REGISTER_PORT_CNF 0x8D01

AoE unregister port service ECS_AOE_UNREGISTER_PORT_REQ 0x8D02

ECS_AOE_UNREGISTER_PORT_CNF 0x8D03

Table 133. Overview over the AoE packets of the EtherCAT Slave stack

AoE also provides another important advantage compared to CoE, namely non-blocking processing. This means, contrary
to CoE, you do not have to wait for an order to be finished before you can make a new order as orders can be processed in
parallel.

Chapter 6 Application interface 98 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

6.9.1 AoE register port service

6.9.1.1 AoE register port request packet

The application can send this packet to the EtherCAT Slave protocol stack in order to register a port for AoE.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 6

ulSta uint32_t 0

ulCmd uint32_t 0x8D00

tData ECS_AOE_REGISTER_PORT_REQ_DATA_T

usPort uint16_t Port number to be registered, values 0..65534, (65535 reserved for ODV)

ulPortFlags uint32_t Bit mask allowing to set services, see bitmask ulPortFlags, value 0..3

Table 134. ECS_AOE_REGISTER_PORT_REQ_T

The following bitmask applies for the parameter ulPortFlags.

Value Name

Description
0x00000001 MSK_ECS_AOE_PORT_FLAGS_SDO

0x00000002 MSK_ECS_AOE_PORT_FLAGS_SDOINFO

Table 135. Definitions for parameter ulPortFlags of ECS_AOE_REGISTER_PORT_REQ_DATA_T

6.9.1.2 AoE register port confirmation packet

By sending this packet to th application, the protocol stack confirms the registration of the specified port for AoE. The
confirmation packet does not have any parameters.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x8D01

Table 136. ECS_AOE_REGISTER_PORT_CNF_T

6.9.2 AoE unregister port service

6.9.2.1 AoE unregister port request packet

This packet can be used to unregister a port from AoE.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 2

ulSta uint32_t 0

ulCmd uint32_t 0x8D02

tData ECS_AOE_UNREGISTER_PORT_REQ_DATA_T

usPort uint16_t

Table 137. ECS_AOE_UNREGISTER_PORT_REQ_T

Chapter 6 Application interface 99 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

6.9.2.2 AoE unregister port confirmation

6.9.2.3 AoE unregister port confirmation packet

The confirmation packet does not have any parameters. It confirms the unregistration of the specified port at AoE.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x8D03

Table 138. ECS_AOE_UNREGISTER_PORT_CNF_T

6.10 Vendor-specific protocol over EtherCAT (VoE)

VoE (Vendor-specific protocol over EtherCAT) is one of the EtherCAT mailbox protocols. As such, it is an acyclic service.
The following Table 130: Overview over the VoE Packets of the EtherCAT Slave stack shows the available packets and
command codes:

Service Command Command Code

Mailbox register type service ECAT_MAILBOX_ADDTYPE_REQ 0x1902

ECAT_MAILBOX_ADDTYPE_CNF 0x1903

Mailbox unregister type service ECAT_MAILBOX_REMTYPE_REQ 0x190C

ECAT_MAILBOX_REMTYPE_CNF 0x190D

Mailbox service ECAT_MAILBOX_IND 0x1900

ECAT_MAILBOX_RES 0x1901

Mailbox send service ECAT_MAILBOX_SEND_REQ 0x1906

ECAT_MAILBOX_SEND_CNF 0x1907

Table 139. Overview over the VoE Packets of the EtherCAT Slave stack

6.10.1 Mailbox register type service

6.10.1.1 Mailbox register type request packet

The application should send this packet to the protocol stack in order to register a task for a specific mailbox type.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 4

ulSta uint32_t 0

ulCmd uint32_t 0x1902

tData ECAT_MBX_ADD_TYPE_REQ_DATA_T

ulType uint32_t Mailbox type number. The type number for VoE is 0x000F, as defined in document
ETG1000.4

Table 140. ECAT_MBX_ADD_TYPE_REQ_T

6.10.1.2 Mailbox register type confirmation packet

By sending this packet to the application, the protocol stack confirms the registration of a task for a specific mailbox type.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

Chapter 6 Application interface 100 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Description

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x1903

Table 141. ECAT_MBX_ADD_TYPE_CNF_T

6.10.2 Mailbox unregister type service

6.10.2.1 Mailbox unregister type request

6.10.2.2 Mailbox unregister type request packet

This packet is used to unregister a task from a specific mailbox type.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 4

ulSta uint32_t 0

ulCmd uint32_t 0x190C

tData ECAT_MBX_REM_TYPE_REQ_DATA_T

ulType uint32_t Mailbox type number. The type number for VoE is 0x000F, as defined in document
ETG1000.4

Table 142. ECAT_MBX_REM_TYPE_REQ_T

6.10.2.3 Mailbox unregister type confirmation packet

By sending this packet to the application, the protocol stack confirms the unregistration of a task from a specific mailbox
type.

Variable Type Description

tHead HIL_PACKET_HEADER_T

ulDest uint32_t 0x20

ulLen uint32_t 0

ulSta uint32_t 0

ulCmd uint32_t 0x190D

Table 143. ECAT_MBX_REM_TYPE_CNF_T

6.10.3 Mailbox service

Mailbox indication / response

6.10.3.1 Mailbox indication packet

Every time the mailbox receives a VoE telegram, the stack sends the indication ECAT_PACKET_MAILBOX_IND_T to the
application.

Packet description

Variable Type Value/Range Description

ulDest UINT32 0 Destination queue handle set to

0: destination is operating system rcX
32 (0x20): destination is the protocol stack

ulLen UINT32 6 + length of bData Packet data length in bytes

ulSta UINT32

ulCmd UINT32 0x1900 ECAT_MAILBOX_IND command

Chapter 6 Application interface 101 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Variable Type Value/Range Description

tData - Structure ECAT_PACKET_MAILBOX_IND_T (= ECAT_PACKET_MAILBOX_REQ_T)

usLength UINT16 Mailbox type number (0x000F denotes mailbox type VoE)

usAddress UINT16 For master use 0

uChannelandPriority UINT8 Lower 6 bits: Channel
Upper 2 bits: Priority

uType UINT8 Mailbox type VoE = 0x0F,
upper 4 bits always have to be set to 0

bData[ECAT_MAILBOX_
DATA_SIZE]

UINT8[] Data area

Table 144. ECAT_PACKET_MAILBOX_IND_T

6.10.3.2 Mailbox response packet

In LOM firmwares, the application has to answer to the indication ECAT_PACKET_MAILBOX_IND_T by sending this

response packet to the protocol stack.
In LFW firmwares, answering to this response is not necessary.

Packet description

Variable Type Value/Range Description

ulDest UINT32 0 Destination queue handle

ulLen UINT32 0 Packet data length in bytes

ulSta UINT32

ulCmd UINT32 0x1901 ECAT_MAILBOX_RES command

Table 145. ECAT_PACKET_MAILBOX_RES_T - Mailbox response

6.10.4 Mailbox send service

Mailbox request / confirmation

6.10.4.1 Mailbox send request packet

To send VoE telegrams from the application to the network, the command code ECAT_MAILBOX_SEND_REQ has to be
used.

Packet description

Variable Type Value/Range Description

ulDest UINT32 0 Destination queue handle set to

0: destination is operating system rcX
32 (0x20): destination is the protocol stack

ulLen UINT32 6 + length of bData Packet data length in bytes

ulSta UINT32 See section [_status_and_error_codes]

ulCmd UINT32 0x1906 ECAT_MAILBOX_SEND_REQ command

tData - Structure ECS_AOE_UNREGISTER_PORT_REQ_DATA_T

usLength UINT16 Mailbox type number (0x000F denotes mailbox type VoE)

usAddress UINT16 For master use 0

usChannel UINT8 Lower 6 bits: Channel
Upper 2 bits: Priority

uType UINT8 Mailbox type VoE = 0x0F,
upper 4 bits always have to be set to 0

bData[ECAT_MAILBOX_
DATA_SIZE]

UINT8[] Data area

Table 146. ECAT_PACKET_MAILBOX_REQ_T – Mailbox send request

Chapter 6 Application interface 102 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

6.10.4.2 Mailbox send confirmation packet

The mailbox answers to a ECAT_MAILBOX_SEND_REQ packet with the command ECAT_MAILBOX_SEND_CNF and
status code 0 if it has been sent properly.

Packet description

Variable Type Value/Range Description

ulDest UINT32 0 Destination queue handle

ulLen UINT32 0 Packet data length in bytes

ulSta UINT32

ulCmd UINT32 0x1907 ECAT_MAILBOX_SEND_CNF command

Table 147. ECAT_PACKET_MAILBOX_CNF_T – Mailbox send confirmation

Chapter 6 Application interface 103 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Chapter 7 Special topics
This chapter provides information for users of linkable object modules (LOM).

7.1 For programmers

Observe the following topics:

■ Config.c
■ The config.c file contains among others the hardware resource declarations and the static task list.

■ Hardware resources
■ Besides the standard rcX resources and the user application resources, the following hardware resources should be

declared. The EtherCAT Slave stack uses these resources.
■ Hardware timer

■ The timer interval determines the minimum cycle time of the device.
■ Ethernet PHYs

■ The Ethernet Physical Interface (PHY) is the connection between the xC Units and the Ethernet Network. They must
be declared depending on the used xC code.

■ Static task list The static task list should contain the timer task and the user application tasks.

7.2 Getting the receiver task handle of the process queue

To get the handle of the process queue of the tasks of the EtherCAT slave protocol stack the macro
TLR_QUE_IDENTIFY() needs to be used. It is described in detail within section 10.1.9.3 of the Hilscher Task Layer
Reference Model Manual. This macro delivers a pointer to the handle of the intended queue to be accessed (which is
returned within the third parameter, phQue), if you provide it with the name of the queue (and an instance of your own
task). The correct ASCII-queue names for accessing the tasks, which you have to use as current value for the first
parameter (pszIdn) are

ASCII queue name Description

“ECAT_ESM_QUE” ECAT_ESM task queue name+ ECAT_ESM task handles all ESM states and AL control Events

“ECAT_MBX_QUE” ECAT_MBX task queue name ECAT_MBX task handles mailboxes

“ECAT_MBXS_QUE” ECAT_MBXS queue name ECAT_MBXS task handles send mailbox

“ECAT_COE_QUE” ECAT_COE task queue name sending of CoE message will go through this queue

“ECAT_SDO_QUE” ECAT_SDO task queue name ECAT_SDO task handles all SDO communications of the CoE
Component part

“ECAT_EOE_QUE” ECAT_EOE task queue name ECAT_EOE task handles all Ethernet over EtherCAT communications

“ECAT_FOE_QUE” ECAT_FOE task queue name ECAT_FOE task handles all File Access over EtherCAT
communications

“ECAT_SOEIDN_QUE” ECAT_SOEIDN task queue name ECAT_ SOEIDN task handles all Servo Profile over EtherCAT
communications

"QUE_ECAT_DPM" ECAT_DPM task queue name ECAT_DPM task handles dual port memory access

Table 148. Names of queues in EtherCAT Slave stack

The returned handle has to be used as value ulDest in all initiator packets the AP task intends to send to the respective
task. This handle is the same handle that has to be used in conjunction with the macros like
_TLR_QUE_SENDPACKET_FIFO/LIFO() for sending a packet to the respective task.

Chapter 7 Special topics 104 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Chapter 8 Status and error codes
Stack specific and component specific status and error codes are not listed her. They can be can be found in the
following header files:

■ EcsV4_Results.h (stack error codes)
■ EcsV4_Public.h (Al status codes)
■ TLR_Results.h
■ TLR_global_error.h
■ OdV3_Results.h or objdict_error.h (Objectdictionary related errocodes)

8.1 Error LED

The meaning of each LED signal is specified in [docref12[12]]. The codes can be found in the related header files. As a
quick reference, we list the meaning of the blinking of the error LED here:

Value Name

Description
0 ECAT_ERRORLED_OFF

No error i.e. EtherCAT communication is in working condition.

1 ECAT_ERRORLED_SOLID_ON

Application controller failure, for instance a PDI Watchdog timeout has occurred (Application controller is not
responding any more).

2 ECAT_ERRORLED_FLICKERING

Booting error

4 ECAT_ERRORLED_BLINKING

Invalid Configuration: General Configuration Error
Example: State change commanded by master is impossible due to register or object settings. It is recommended to
check and correct settings and hardware options.

5 ECAT_ERRORLED_SINGLE_FLASH

Local error / Unsolicited State Change: Slave device application has changed the EtherCAT state autonomously:

Parameter Change in the AL status register is set to 0x01: change/error
Example: Synchronization Error, device enters Safe-Operational automatically.

6 ECAT_ERRORLED_DOUBLE_FLASH

Watchdog error for instance, a Process Data Watchdog Timeout, EtherCAT Watchdog Timeout or Sync Manager
Watchdog Timeout occurred.

7 ECAT_ERRORLED_TRIPLE_FLASH

Reserved for future use

8 ECAT_ERRORLED_QUADRUPLE_FLASH

Reserved for future use

9 ECAT_ERRORLED_QUINTUPLE_FLASH

Reserved for future use

Table 149. EtherCAT error LED codes

8.2 SDO abort codes

Return codes are generally structured into the following elements:

■ Error Class
■ Error Code
■ Additional Code

Error class
The element Error Class (1 byte) generally classifies the kind of error, see table:

Chapter 8 Status and error codes 105 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Class Name Description

1 vfd-state Status error in virtual field device

2 application-reference Error in application program

3 definition

4 resource Resource error

5 service Error in service execution

6 access Access error

7 od Error in object dictionary

8 other Other error

Error code The element Error Code (1 byte) accomplishes the more precise differentiation of the error cause within an
Error Class. For Error Class = 8 (Other error) only Error Code = 0 (Other error code) is defined, for more detailing the
Additional Code is available.

Additional code

The additional code contains the detailed error description.

8.2.1 SDO abort codes

The following codes can also be found ind Ecat_CoE_Structs.h (LOM)

SDO abort code Error
Clas
s

Error
code

Addi
tiona
l
code

Description

0x00000000 0 0 0 No error

0x05030000 5 3 0 Toggle bit not changed – Error in toggle bit at segmented transfer

0x05040000 5 4 0 SDO Protocol Timeout (at service execution)

0x05040001 5 4 1 Unknown command specifier (for SDO Service)

0x05040005 5 4 5 Out of memory - Memory overflow occurred at SDO Service execution

0x06010000 6 1 0 Unsupported access to an index

0x06010001 6 1 1 Write –only entry (Index may only be written but not read)

0x06010002 6 1 2 Read –only entry (Index may only be read but not written- parameter lock active)

0x06010003 6 1 3 Subindex cannot be written, subindex 0 must be 0 for write access

0x06010004 6 1 4 SDO Complete access not supported for objects of variable length such as ENUM object types

0x06010005 6 1 5 Object length exceeds mailbox size

0x06010006 6 1 6 Download blocked because object mapped to RxPDO

0x06020000 6 2 0 Object not existing – wrong index.

0x06040041 6 4 41 Object cannot be PDO-mapped – The index may not be mapped into a PDO

0x06040042 6 4 42 The number of mapped objects exceeds the capacity of the PDO

0x06040043 6 4 43 Parameter is incompatible (The data format of the parameter is incompatible for the index)

0x06040047 6 4 47 Internal device incompatibility (Device-internal error)

0x06060000 6 6 0 Hardware error (Device-internal error)

0x06070010 6 7 10 Parameter length error – data format for index has wrong size

0x06070012 6 7 12 Parameter length too long – Data format to large for index

0x06070013 6 7 13 Parameter length too short – Data format to small for index

0x06090011 6 9 11 Subindex not existing (has not been implemented)

0x06090030 6 9 30 Value exceeded a limit (value is invalid)

0x06090031 6 9 31 Value is too large

0x06090032 6 9 32 Value is too small

0x06090036 6 9 36 The maximum value is less than the minimum value

0x08000000 8 0 0 General error

0x08000020 8 0 20 Data cannot be read or stored – error in data access

Chapter 8 Status and error codes 106 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

SDO abort code Error
Clas
s

Error
code

Addi
tiona
l
code

Description

0x08000021 8 0 21 Data cannot be read or stored because of local control – error in data access

0x08000022 8 0 22 Data cannot be read or stored in this state – error in data access

0x08000023 8 0 23 There is no object dictionary present.

8.3 Correspondence of SDO abort codes and status / error codes

The following table explains the correspondence between the SDO abort code on one hand and the status/error code of
the EtherCAT Slave protocol stack on the other hand:

SDO abort code Status/ Error code Description

0x00000000 0x00000000
TL_S_OK

Status ok

0x05030000 0xC0B10001
ERR_ECSV4_COE_SDOABORT_TOGGLE_BIT_NOT_CHANGED

Toggle bit was not changed.

0x05040000 0xC0B10002
ERR_ECSV4_COE_SDOABORT_SDO_PROTOCOL_TIMEOUT

SDO protocol timeout.

0x05040001 0xC0B10003
ERR_ECSV4_COE_SDOABORT_CLIENT_SERVER_COMMAND
_SPECIFIER_NOT_VALID

Client/Server command specifier not valid or
unknown.

0x05040005 0xC0B10004
ERR_ECSV4_COE_SDOABORT_OUT_OF_MEMORY

Out of memory.

0x06010000 0xC0B10005
ERR_ECSV4_COE_SDOABORT_UNSUPPORTED_ACCESS_TO
_AN_OBJECT

Unsupported access to an object.

0x06010001 0xC0B10006
ERR_ECSV4_COE_SDOABORT_ATTEMPT_TO_READ_A_WRIT
E_ONLY_OBJECT

Attempt to read a write only object.

0x06010002 0xC0B10007
ERR_ECSV4_COE_SDOABORT_ATTEMPT_TO_WRITE_TO_A_
READ_ONLY_OBJECT

Attempt to write to a read only object.

0x06020000 0xC0B10008
ERR_ECSV4_COE_SDOABORT_OBJECT_DOES_NOT_EXIST

The object does not exist in the object
dictionary.

0x06040041 0xC0B10009
ERR_ECSV4_COE_SDOABORT_OBJECT_CAN_NOT_BE_MAP
PED_INTO_THE_PDO

The object cannot be mapped into the PDO.

0x06040042 0xC0B1000A
ERR_ECSV4_COE_SDOABORT_NUMBER_AND_LENGTH_OF_
OBJECTS_WOULD_EXCEED_PDO_LENGTH

The number and length of the objects to be
mapped would exceed the PDO length.

0x06040043 0xC0B1000B
ERR_ECSV4_COE_SDOABORT_GENERAL_PARAMETER_INCO
MPATIBILITY_REASON

General parameter incompatibility reason.

0x06040047 0xC0B1000C
ERR_ECSV4_COE_SDOABORT_GENERAL_INTERNAL_INCOM
PATIBILITY_IN_DEVICE

General internal incompatibility in the device.

0x06060000 0xC0B1000D
ERR_ECSV4_COE_SDOABORT_ACCESS_FAILED_DUE_TO_A_
HARDWARE_ERROR

Access failed due to a hardware error.

0x06070010 0xC0B1000E
ERR_ECSV4_COE_SDOABORT_DATA_TYPE_DOES_NOT_MAT
CH_LEN_OF_SRV_PARAM_DOES_NOT_MATCH

Data type does not match, length of service
parameter does not match.

Chapter 8 Status and error codes 107 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

SDO abort code Status/ Error code Description

0x06070012 0xC0B1000F
ERR_ECSV4_COE_SDOABORT_DATA_TYPE_DOES_NOT_MAT
CH_LEN_OF_SRV_PARAM_TOO_HIGH

Data type does not match, length of service
parameter too high.

0x06070013 0xC0B10010
ERR_ECSV4_COE_SDOABORT_DATA_TYPE_DOES_NOT_MAT
CH_LEN_OF_SRV_PARAM_TOO_LOW

Data type does not match, length of service
parameter too low.

0x06090011 0xC0B10011
ERR_ECSV4_COE_SDOABORT_SUBINDEX_DOES_NOT_EXIST

Subindex does not exist.

8.4 CoE emergency codes

The CoE emergency codes are defined by can open specfication and adapted by Ethercat. To understand them in the
Ethercat context and to make it easier to find the meaning, this section is added here.

Error Code (Hexadecimal Value) Meaning of code

00xx Error Reset or No Error

10xx Generic Error

20xx Current

21xx Current, device input side

22xx Current inside the device

23xx Current, device output side

30xx Voltage

31xx Mains Voltage

32xx Voltage inside the device

33xx Output Voltage

40xx Temperature

41xx Ambient Temperature

42xx Device Temperature

50xx Device Hardware

60xx Device Software

61xx Internal Software

62xx User Software

63xx Data Set

70xx Additional Modules

80xx Monitoring

81xx Communication

82xx Protocol Error

8210 PDO not processed due to length error

8220 PDO length exceeded

90xx External Error

A0xx EtherCAT State Machine Transition Error

F0xx Additional Functions

FFxx Device specific

Table 150. CoE emergency codes

Chapter 8 Status and error codes 108 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Appendix A: Appendix

A.1 List of figures

Figure 1. Usecase loadable Firmware

Figure 2. Usecase loadable Firmware

Figure 3. Set Configuration / Channel Init

Figure 4. Firmware structure

Figure 5. State diagram of EtherCAT State Machine (ESM)

Figure 6. Sequence diagram of state change with indication to application/host

Figure 7. Sequence diagram of EtherCAT state change controlled by application/host

Figure 8. Sequence diagram of state change controlled by application/host with additional AL status changed indications

Figure 9. Mapping scheme for a PDO

Figure 10. Sequence within the application

Figure 11. Initialization sequence with placing of registrations and object dictionary creation

Figure 12. Initialization sequence for Explicit Device Identification

Figure 13. SDO download with Complete Access (successful)

Figure 14. Dynamic PDO assignment: One application registered for write indications (successful)

Figure 15. Dynamic PDO assignment: One application registered for write indications (not successful)

Figure 16. Dynamic PDO assignment with Complete Access: One application registered for write indications (successful)

Figure 17. Set ready service request

Figure 18. Relation between Set Configuration packet and ESI file

Figure 19. Send CoE emergency service

Figure 20. SII write Indication service

Figure 21. Sequence diagram for ECAT_EOE_REGISTER_FOR_FRAME_INDICATIONS_REQ/CNF packets

Figure 22. Sequence diagram for ECAT_EOE_UNREGISTER_FROM_FRAME_INDICATIONS_REQ/CNF packets

Figure 23. Sequence diagram EoE frame reception

Figure 24. Sequence diagram for ECAT_EOE_REGISTER_FOR_IP_PARAM_INDICATIONS_REQ/CNF

Figure 25. Sequence diagram for ECAT_EOE_UNREGISTER_FOR_IP_PARAM_INDICATIONS_REQ/CNF

Figure 26. Set IP parameter service

Figure 27. Get IP parameter service

Figure 28. ECAT_FOE_WRITE_FILE_RES – FoE write file response - Positive response

Figure 29. ECAT_FOE_WRITE_FILE_RES – FoE write file response - Negative response

Figure 30. ECAT_FOE_READ_FILE_RES – FoE read file response - Negative response

Figure 31. ECAT_FOE_READ_FILE_RES – FoE read file response - Positive response

Appendix A: Appendix 109 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

A.2 List of tables

Table 1. Component configuration parameters

Table 2. Extended configuration parameters

Table 3. Input and output data netX 100, 500

Table 4. Input and output data netX 100, 500

Table 5. Slave Information Interface structure as defined in IEC 61158, part 6-12

Table 6. Available standard categories

Table 7. Slave Information Interface Categories

Table 8. Abstract of the CoE Communication Area (0x1000 - 0x1FFF)

Table 9. Minimal object dictionary

Table 10. Default object dictionary

Table 11. Extended status block

Table 12. Set device identification value

Table 13. abParameter

Table 14. Request packet RCX_SET_FW_PARAMETER_REQ_T

Table 15. Confirmation packet RCX_SET_FW_PARAMETER_CNF_T

Table 16. EtherCAT Slave stack components

Table 17. Summary of all queue names, which may be used by an AP task

Table 18. Overview over the general packets of the EtherCAT Slave stack

Table 19. Bitmask ulReadyBits of ECAT_ESM_SETREADY_REQ_DATA_T

Table 20. ECAT_ESM_SETREADY_REQ_T

Table 21. ECAT_ESM_SETREADY_CNF_T

Table 22. ECAT_ESM_INIT_COMPLETE_IND_T

Table 23. ECAT_ESM_INIT_COMPLETE_RES_T

Table 24. Configuration packets overview

Table 25. ECAT_SET_CONFIG_REQ_T

Table 26. Basic configuration data ECAT_SET_CONFIG_REQ_DATA_BASIC_T

Table 27. Flags for ulSystemFlags

Table 28. Values for the parameters ulVendorId, ulProductCode and ulRevisionNumber

Table 29. Parameter ulComponentInitialization

Table 30. ECAT_SET_CONFIG_REQ_DATA_COMPONENTS_T

Table 31. ECAT_SET_CONFIG_COE_T

Table 32. Flag for bCoeDetails

Table 33. ECAT_SET_CONFIG_EOE_T

Table 34. ECAT_SET_CONFIG_FOE_T

Table 35. ECAT_SET_CONFIG_SOE_T

Table 36. ECAT_SET_CONFIG_SYNCMODES_T

Table 37. Flag for bSyncSource

Table 38. Example for SM2 synchronous mode

Table 39. ECAT_SET_CONFIG_SYNCPDI_T

Table 40. Definitions for parameter bSyncPdiConfig of ECAT_SET_CONFIG_SYNCPDI_T

Table 41. ECAT_SET_CONFIG_UID_T

Table 42. ECAT_SET_CONFIG_BOOTMBX_T

Table 43. ECAT_SET_CONFIG_DEVICEINFO_T

Table 44. Device info configuration parameters

Table 45. ECAT_SET_CONFIG_SMLENGTH_T

Table 46. ECAT_SET_CONFIG_CNF_T

Appendix A: Appendix 110 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Table 47. ECAT_SET_CONFIG_EXT_STRUCTURE_TYPE_E

Table 48. ECAT_SET_CONFIG_EXT_DATA_TYPE_SMS_T

Table 49. ECAT_SET_CONFIG_EXT_DATA_TYPE_BOOTMBX_T

Table 50. ECAT_SET_CONFIG_EXT_STRUCTUREDATA_T

Table 51. ECAT_SET_CONFIG_EXT_REQ_DATA_T

Table 52. ECAT_SET_CONFIG_EXT_REQ_T

Table 53. ECAT_SET_CONFIG_EXT_CNF_T

Table 54. ECAT_DPM_SET_IO_SIZE_REQ_T

Table 55. ECAT_DPM_SET_IO_SIZE_CNF_T

Table 56. ECAT_DPM_SET_STATION_ALIAS_REQ_T

Table 57. ECAT_DPM_SET_STATION_ALIAS_CNF_T

Table 58. ECAT_DPM_GET_STATION_ALIAS_REQ_T

Table 59. ECAT_DPM_GET_STATION_ALIAS_CNF_T

Table 60. Overview over the EtherCAT state machine related packets of the EtherCAT Slave stack

Table 61. ECAT_ESM_REGISTER_FOR_ALCONTROL_INDICATIONS_REQ_T

Table 62. ECAT_ESM_REGISTER_FOR_ALCONTROL_INDICATIONS_CNF_T

Table 63. ECAT_ESM_UNREGISTER_FROM_ALCONTROL_INDICATIONS_REQ_T

Table 64. ECAT_ESM_UNREGISTER_FROM_ALCONTROL_INDICATIONS_CNF_T

Table 65. ECAT_ESM_ALCONTROL_CHANGED_IND_T

Table 66. State definitions for AlControl uState

Table 67. Coding of EtherCAT state

Table 68. ECAT_ESM_ALCONTROL_CHANGED_RES_T

Table 69. ECAT_ESM_ALSTATUS_CHANGED_IND_T

Table 70. State definitions for AlStatus uState

Table 71. ECAT_ESM_ALSTATUS_CHANGED_RES_T

Table 72. ECAT_ESM_SET_ALSTATUS_REQ_T

Table 73. ECAT_ESM_SET_ALSTATUS_CNF_T

Table 74. ECAT_ESM_GET_ALSTATUS_REQ_T

Table 75. ECAT_ESM_GET_ALSTATUS_CNF_T

Table 76. Overview over the CoE packets of the EtherCAT Slave stack

Table 77. ECAT_COE_SEND_EMERGENCY_REQ_T

Table 78. Bit Mask bErrorRegister

Table 79. ECAT_COE_SEND_EMERGENCY_CNF_T

Table 80. Overview over the SII packets of the EtherCAT Slave stack

Table 81. ECAT_ESM_SII_READ_REQ_T

Table 82. ECAT_ESM_SII_READ_CNF_T

Table 83. ECAT_ESM_SII_WRITE_REQ_T

Table 84. ECAT_ESM_SII_WRITE_CNF_T

Table 85. ECAT_ESM_REGISTER_FOR_SIIWRITE_INDICATIONS_REQ_T

Table 86. ECAT_ESM_REGISTER_FOR_SIIWRITE_INDICATIONS_CNF_T

Table 87. ECAT_ESM_UNREGISTER_FROM_SIIWRITE_INDICATIONS_REQ_T

Table 88. ECAT_ESM_UNREGISTER_FROM_SIIWRITE_INDICATIONS_CNF_T

Table 89. ECAT_ESM_SII_WRITE_IND_T

Table 90. ECAT_ESM_SII_WRITE_RES_T

Table 91. Overview over the EoE Packets of the EtherCAT Slave Stack

Table 92. ECAT_EOE_REGISTER_FOR_FRAME_INDICATIONS_REQ_T

Table 93. ECAT_EOE_REGISTER_FOR_FRAME_INDICATIONS_CNF_T

Appendix A: Appendix 111 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Table 94. ECAT_EOE_UNREGISTER_FROM_FRAME_INDICATIONS_REQ_T

Table 95. ECAT_EOE_UNREGISTER_FROM_FRAME_INDICATIONS_CNF_T

Table 96. Meaning of bit mask usFlags

Table 97. ECAT_EOE_SEND_FRAME_REQ_T

Table 98. ECAT_EOE_SEND_FRAME_CNF_T

Table 99. ECAT_EOE_FRAME_RECEIVED_IND_T

Table 100. ECAT_EOE_FRAME_RECEIVED_RES_T

Table 101. ECAT_EOE_REGISTER_FOR_IP_PARAM_INDICATIONS_REQ_T

Table 102. ECAT_EOE_REGISTER_FOR_IP_PARAM_INDICATIONS_CNF_T

Table 103. ECAT_EOE_UNREGISTER_FROM_IP_PARAM_INDICATIONS_REQ_T

Table 104. ECAT_EOE_UNREGISTER_FROM_IP_PARAM_INDICATIONS_CNF_T

Table 105. Bitmask for parameter ulFlag of ECAT_EOE_SET_IP_PARAM_IND_DATA_T

Table 106. ECAT_EOE_SET_IP_PARAM_IND_T

Table 107. ECAT_EOE_SET_IP_PARAM_RES_T

Table 108. Bitmask for parameter ulFlag of ECAT_EOE_GET_IP_PARAM_IND_DATA_T

Table 109. ECAT_EOE_GET_IP_PARAM_IND_T

Table 110. ECAT_EOE_GET_IP_PARAM_RES_T

Table 111. Overview over the FoE Packets of the EtherCAT Slave Stack

Table 112. Filter Flags for ECAT_FOE_SET_OPTIONS_REQ_DATA_T

Table 113. ECAT_FOE_SET_OPTIONS_REQ_T

Table 114. ECAT_FOE_SET_OPTIONS_CNF_T

Table 115. Filter Flags for bIndicationType of ECAT_FOE_REGISTER_FILE_INDICATIONS_

Table 116. Overview over the indications of FoE register file indications:

Table 117. ECAT_FOE_REGISTER_FILE_INDICATIONS_PCK_T

Table 118. ECAT_FOE_REGISTER_FILE_INDICATIONS_REQ_T

Table 119. ECAT_FOE_REGISTER_FILE_INDICATIONS_CNF_T

Table 120. ECAT_FOE_UNREGISTER_FILE_INDICATIONS_PCK_T

Table 121. ECAT_FOE_UNREGISTER_FILE_INDICATIONS_REQ_T

Table 122. ECAT_FOE_UNREGISTER_FILE_INDICATIONS_CNF_T

Table 123. ECAT_FOE_WRITE_FILE_IND_T

Table 124. ECAT_FOE_WRITE_FILE_RES_T

Table 125. ECAT_FOE_READ_FILE_IND_T

Table 126. ECAT_FOE_READ_FILE_RES_T

Table 127. FoE Read File Res Error Codes

Table 128. ECAT_FOE_FILE_WRITTEN_PCK_T

Table 129. ECAT_FOE_FILE_WRITTEN_IND_T

Table 130. ECAT_FOE_FILE_WRITTEN_RES_T

Table 131. ECAT_FOE_FILE_WRITE_ABORTED_IND_T

Table 132. ECAT_FOE_FILE_WRITE_ABORTED_RES_T

Table 133. Overview over the AoE packets of the EtherCAT Slave stack

Table 134. ECS_AOE_REGISTER_PORT_REQ_T

Table 135. Definitions for parameter ulPortFlags of ECS_AOE_REGISTER_PORT_REQ_DATA_T

Table 136. ECS_AOE_REGISTER_PORT_CNF_T

Table 137. ECS_AOE_UNREGISTER_PORT_REQ_T

Table 138. ECS_AOE_UNREGISTER_PORT_CNF_T

Table 139. Overview over the VoE Packets of the EtherCAT Slave stack

Table 140. ECAT_MBX_ADD_TYPE_REQ_T

Appendix A: Appendix 112 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Table 141. ECAT_MBX_ADD_TYPE_CNF_T

Table 142. ECAT_MBX_REM_TYPE_REQ_T

Table 143. ECAT_MBX_REM_TYPE_CNF_T

Table 144. ECAT_PACKET_MAILBOX_IND_T

Table 145. ECAT_PACKET_MAILBOX_RES_T - Mailbox response

Table 146. ECAT_PACKET_MAILBOX_REQ_T – Mailbox send request

Table 147. ECAT_PACKET_MAILBOX_CNF_T – Mailbox send confirmation

Table 148. Names of queues in EtherCAT Slave stack

Table 149. EtherCAT error LED codes

Table 150. CoE emergency codes

Appendix A: Appendix 113 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

A.3 List of snippets

Appendix A: Appendix 114 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

A.4 Legal Notes

Copyright

© Hilscher Gesellschaft für Systemautomation mbH

All rights reserved.

The images, photographs and texts in the accompanying materials (in the form of a user’s manual, operator’s manual,
Statement of Work document and all other document types, support texts, documentation, etc.) are protected by German
and international copyright and by international trade and protective provisions. Without the prior written consent, you do
not have permission to duplicate them either in full or in part using technical or mechanical methods (print, photocopy or
any other method), to edit them using electronic systems or to transfer them. You are not permitted to make changes to
copyright notices, markings, trademarks or ownership declarations. Illustrations are provided without taking the patent
situation into account. Any company names and product designations provided in this document may be brands or
trademarks by the corresponding owner and may be protected under trademark, brand or patent law. Any form of further
use shall require the express consent from the relevant owner of the rights.

Important notes

Utmost care was/is given in the preparation of the documentation at hand consisting of a user’s manual, operating manual
and any other document type and accompanying texts. However, errors cannot be ruled out. Therefore, we cannot
assume any guarantee or legal responsibility for erroneous information or liability of any kind. You are hereby made aware
that descriptions found in the user’s manual, the accompanying texts and the documentation neither represent a
guarantee nor any indication on proper use as stipulated in the agreement or a promised attribute. It cannot be ruled out
that the user’s manual, the accompanying texts and the documentation do not completely match the described attributes,
standards or any other data for the delivered product. A warranty or guarantee with respect to the correctness or
accuracy of the information is not assumed.

We reserve the right to modify our products and the specifications for such as well as the corresponding documentation
in the form of a user’s manual, operating manual and/or any other document types and accompanying texts at any time
and without notice without being required to notify of said modification. Changes shall be taken into account in future
manuals and do not represent an obligation of any kind, in particular there shall be no right to have delivered documents
revised. The manual delivered with the product shall apply.

Under no circumstances shall Hilscher Gesellschaft für Systemautomation mbH be liable for direct, indirect, ancillary or
subsequent damage, or for any loss of income, which may arise after use of the information contained herein.

Appendix A: Appendix 115 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Liability disclaimer

The hardware and/or software was created and tested by Hilscher Gesellschaft für Systemautomation mbH with utmost
care and is made available as is. No warranty can be assumed for the performance or flawlessness of the hardware and/or
software under all application conditions and scenarios and the work results achieved by the user when using the
hardware and/or software. Liability for any damage that may have occurred as a result of using the hardware and/or
software or the corresponding documents shall be limited to an event involving willful intent or a grossly negligent
violation of a fundamental contractual obligation. However, the right to assert damages due to a violation of a fundamental
contractual obligation shall be limited to contract-typical foreseeable damage.

It is hereby expressly agreed upon in particular that any use or utilization of the hardware and/or software in connection
with

■ Flight control systems in aviation and aerospace;
■ Nuclear fission processes in nuclear power plants;
■ Medical devices used for life support and
■ Vehicle control systems used in passenger transport

shall be excluded. Use of the hardware and/or software in any of the following areas is strictly prohibited:

■ For military purposes or in weaponry;
■ For designing, engineering, maintaining or operating nuclear systems;
■ In flight safety systems, aviation and flight telecommunications systems;
■ In life-support systems;
■ In systems in which any malfunction in the hardware and/or software may result in physical injuries or fatalities.

You are hereby made aware that the hardware and/or software was not created for use in hazardous environments, which
require fail-safe control mechanisms. Use of the hardware and/or software in this kind of environment shall be at your own
risk; any liability for damage or loss due to impermissible use shall be excluded.

Appendix A: Appendix 116 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Warranty

Hilscher Gesellschaft für Systemautomation mbH hereby guarantees that the software shall run without errors in
accordance with the requirements listed in the specifications and that there were no defects on the date of acceptance.
The warranty period shall be 12 months commencing as of the date of acceptance or purchase (with express declaration
or implied, by customer’s conclusive behavior, e.g. putting into operation permanently).

The warranty obligation for equipment (hardware) we produce is 36 months, calculated as of the date of delivery ex
works. The aforementioned provisions shall not apply if longer warranty periods are mandatory by law pursuant to Section
438 (1.2) BGB, Section 479 (1) BGB and Section 634a (1) BGB [Bürgerliches Gesetzbuch; German Civil Code] If, despite of
all due care taken, the delivered product should have a defect, which already existed at the time of the transfer of risk, it
shall be at our discretion to either repair the product or to deliver a replacement product, subject to timely notification of
defect.

The warranty obligation shall not apply if the notification of defect is not asserted promptly, if the purchaser or third party
has tampered with the products, if the defect is the result of natural wear, was caused by unfavorable operating
conditions or is due to violations against our operating regulations or against rules of good electrical engineering practice,
or if our request to return the defective object is not promptly complied with.

Costs of support, maintenance, customization and product care

Please be advised that any subsequent improvement shall only be free of charge if a defect is found. Any form of technical
support, maintenance and customization is not a warranty service, but instead shall be charged extra.

Additional guarantees

Although the hardware and software was developed and tested in-depth with greatest care, Hilscher Gesellschaft für
Systemautomation mbH shall not assume any guarantee for the suitability thereof for any purpose that was not confirmed
in writing. No guarantee can be granted whereby the hardware and software satisfies your requirements, or the use of the
hardware and/or software is uninterruptable or the hardware and/or software is fault-free.

It cannot be guaranteed that patents and/or ownership privileges have not been infringed upon or violated or that the
products are free from third-party influence. No additional guarantees or promises shall be made as to whether the
product is market current, free from deficiency in title, or can be integrated or is usable for specific purposes, unless such
guarantees or promises are required under existing law and cannot be restricted.

Appendix A: Appendix 117 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

Confidentiality

The customer hereby expressly acknowledges that this document contains trade secrets, information protected by
copyright and other patent and ownership privileges as well as any related rights of Hilscher Gesellschaft für
Systemautomation mbH. The customer agrees to treat as confidential all of the information made available to customer by
Hilscher Gesellschaft für Systemautomation mbH and rights, which were disclosed by Hilscher Gesellschaft für
Systemautomation mbH and that were made accessible as well as the terms and conditions of this agreement itself.

The parties hereby agree to one another that the information that each party receives from the other party respectively is
and shall remain the intellectual property of said other party, unless provided for otherwise in a contractual agreement.

The customer must not allow any third party to become knowledgeable of this expertise and shall only provide knowledge
thereof to authorized users as appropriate and necessary. Companies associated with the customer shall not be deemed
third parties. The customer must obligate authorized users to confidentiality. The customer should only use the
confidential information in connection with the performances specified in this agreement.

The customer must not use this confidential information to his own advantage or for his own purposes or rather to the
advantage or for the purpose of a third party, nor must it be used for commercial purposes and this confidential
information must only be used to the extent provided for in this agreement or otherwise to the extent as expressly
authorized by the disclosing party in written form. The customer has the right, subject to the obligation to confidentiality,
to disclose the terms and conditions of this agreement directly to his legal and financial consultants as would be required
for the customer’s normal business operation.

Export provisions

The delivered product (including technical data) is subject to the legal export and/or import laws as well as any associated
regulations of various countries, especially such laws applicable in Germany and in the United States. The products /
hardware / software must not be exported into such countries for which export is prohibited under US American export
control laws and its supplementary provisions. You hereby agree to strictly follow the regulations and to yourself be
responsible for observing them. You are hereby made aware that you may be required to obtain governmental approval to
export, reexport or import the product.

Appendix A: Appendix 118 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

A.5 Contacts

Headquarters

Germany
Hilscher Gesellschaft für Systemautomation mbH

Rheinstrasse 15

65795 Hattersheim

Phone: +49 (0) 6190 9907-0

Fax: +49 (0) 6190 9907-50

E-Mail: info@hilscher.com

Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China
Hilscher Systemautomation (Shanghai) Co. Ltd.

200010 Shanghai

Phone: +86 (0) 21-6355-5161

E-Mail: info@hilscher.cn

Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

Japan
Hilscher Japan KK

Tokyo, 160-0022

Phone: +81 (0) 3-5362-0521

E-Mail: info@hilscher.jp

Support
Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

France
Hilscher France S.a.r.l.

69800 Saint Priest

Phone: +33 (0) 4 72 37 98 40

E-Mail: info@hilscher.fr

Support
Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

Republic of Korea
Hilscher Korea Inc.

13494, Seongnam, Gyeonggi

Phone: +82 (0) 31-739-8361

E-Mail: info@hilscher.kr

Support
Phone: +82 (0) 31-739-8363
E-Mail: kr.support@hilscher.com

India
Hilscher India Pvt. Ltd.

Pune, Delhi, Mumbai, Bangalore

Phone: +91 8888 750 777

E-Mail: info@hilscher.in

Support
Phone: +91 8108884011
E-Mail: info@hilscher.in

Switzerland
Hilscher Swiss GmbH

4500 Solothurn

Phone: +41 (0) 32 623 6633

E-Mail: info@hilscher.ch

Support
Phone: +41 (0) 32 623 6633
E-Mail: ch.support@hilscher.com

Austria
Hilscher Austria GmbH

4020 Linz

Phone: +43 732 931 675-0

E-Mail: sales.at@hilscher.com

Support
Phone: +43 732 931 675-0
E-Mail: at.support@hilscher.com

Italy
Hilscher Italia S.r.l.

20090 Vimodrone (MI)

Phone: +39 02 25007068

E-Mail: info@hilscher.it

Support
Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

USA
Hilscher North America, Inc.

Lisle, IL 60532

Phone: +1 630-505-5301

E-Mail: info@hilscher.us

Support
Phone: +1 630-505-5301
E-Mail: us.support@hilscher.com

Appendix A: Appendix 119 / 119

EtherCAT Slave | Protocol API V4.9
DOC110909APIV4.9.1.0EN | Revision V4.9.1.0 | English | Preliminary | Public | 2024-03-07

www.hilscher.com
© Hilscher 2024

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.kr
mailto:kr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.in
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:sales.at@hilscher.com
mailto:at.support@hilscher.com
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

	EtherCAT Slave: Protocol API V4.9
	Table of Contents
	Chapter 1 Introduction
	1.1 About this document
	1.2 Functional Overview
	1.3 System requirements
	1.4 Intended audience
	1.5 Technical data
	1.6 Terms, abbreviations and definitions
	1.7 References to documents

	Chapter 2 Getting started
	2.1 Stack types
	2.1.1 Loadable Firmware (LFW)
	2.1.2 Linkable Object Module (LOM)

	2.2 Configuring the EtherCAT stack
	2.2.1 Configuration methods
	2.2.2 Sequence and priority of configuration evaluation
	2.2.3 Configuration parameters
	2.2.4 Application sets the configuration parameters
	2.2.4.1 Reconfiguration
	2.2.4.2 Delete configuration
	2.2.4.3 Configuration lock

	2.2.5 Configuration software

	2.3 Cyclic data exchange - Process data input and output
	2.3.1 BusOn / BusOff

	2.4 Acyclic data exchange
	2.5 Object dictionary

	Chapter 3 Stack structure and stack functions
	3.1 Structure of the EtherCAT Slave stack
	3.2 Base component
	3.2.1 ESM task
	3.2.1.1 EtherCAT State Machine (ESM)
	3.2.1.2 AL control register and AL status register

	3.2.2 Slave Information Interface (SII)
	3.2.3 MBX task

	3.3 CoE component
	3.3.1 CoE task
	3.3.1.1 CoE Emergencies

	3.3.2 SDO task
	3.3.3 ODV3 task
	3.3.3.1 Access rights
	3.3.3.2 CoE communication area for EtherCAT
	3.3.3.3 Custom object dictionary based on minimal object directory
	3.3.3.4 Default object dictionary
	3.3.3.5 PDO mapping for cyclic communication
	3.3.3.6 Complete Access

	3.4 FoE component
	3.5 Behavior when receiving a Set Configuration command
	3.6 Watchdogs
	3.6.1 DPM watchdog
	3.6.2 SM Watchdog
	3.6.3 PDI Watchdog

	3.7 Usage of PHYs

	Chapter 4 Status information
	4.1 Common status
	4.2 Extended status

	Chapter 5 Requirements to the application
	5.1 Sequence within the host application
	5.2 General initialization sequence
	5.3 Explicit Device Identification
	5.3.1 Initialization sequence
	5.3.2 Set firmware parameter
	5.3.2.1 No implementation for netX devices with rotary switches

	5.3.3 Required entry in ESI file for Explicit Device Identification

	5.4 Complete Access for object data held by application
	5.5 Dynamic PDO mapping
	5.5.1 One application registered (application successful)
	5.5.2 One application registered (application not successful)
	5.5.3 Multiple applications registered (one application not successful)
	5.5.4 One application registered Complete Access: (application successful)

	5.6 Protocol-specific aspects to regard for ODV3 API when using the EtherCAT Slave stack
	5.6.1 ODV3 access mask and flags
	5.6.2 Free memory available for ODV3 objects can decrease after firmware update

	Chapter 6 Application interface
	6.1 General
	6.1.1 Register application service
	6.1.2 Unregister application service
	6.1.3 Set ready service
	6.1.3.1 Set ready request packet
	6.1.3.2 Set ready confirmation packet

	6.1.4 Initialization complete service
	6.1.4.1 Init complete indication packet
	6.1.4.2 Init complete response packet

	6.1.5 Link status changed service
	6.1.5.1 Link status changed indication
	6.1.5.2 Link status changed response

	6.2 Configuration
	6.2.1 Set configuration service
	6.2.1.1 Set config request packet
	6.2.1.2 Basic configuration data structure
	6.2.1.3 Components configuration data structure
	6.2.1.4 Object dictionary creation mode:
	6.2.1.5 Set config confirmation packet

	6.2.2 Set extended configuration service
	6.2.3 Set handshake configuration service
	6.2.4 Set IO Size service
	6.2.4.1 set io size request packet
	6.2.4.2 set io size confirmation packet

	6.2.5 Set Station Alias service
	6.2.5.1 set station alias confirmation packet
	6.2.5.2 set station alias confirmation packet

	6.2.6 Get Station Alias service
	6.2.6.1 Get Station Alias request packet
	6.2.6.2 Get Station Alias confirmation packet

	6.2.7 Relation between Set configuration packet and ESI file

	6.3 EtherCAT state machine
	6.3.1 Register for AL control changed indications service
	6.3.1.1 Register for AL control changed indication request packet
	6.3.1.2 Register for AL control changed indications confirmation packet

	6.3.2 Unregister from AL control changed indications service
	6.3.2.1 Unregister from AL control changed indications request packet
	6.3.2.2 Unregister from AL control changed indications confirmation packet

	6.3.3 AL control changed service
	6.3.3.1 AL control changed indication packet
	6.3.3.2 AL control changed response packet

	6.3.4 AL status changed service
	6.3.4.1 AL status changed indication
	6.3.4.2 AL status changed response

	6.3.5 Set AL status service
	6.3.5.1 Set AL status request
	6.3.5.2 Set AL status confirmation packet

	6.3.6 Get AL status service
	6.3.6.1 Get AL status request packet
	6.3.6.2 Get AL status confirmation packet

	6.4 CoE
	6.4.1 Send CoE emergency service
	6.4.1.1 Send CoE emergency request
	6.4.1.2 Send CoE emergency confirmation packet

	6.5 Packets for Object Dictionary access
	6.6 Slave Information Interface (SII in virtual EEPROM)
	6.6.1 SII read service
	6.6.1.1 SII read request packet
	6.6.1.2 SII read confirmation packet

	6.6.2 SII write service
	6.6.2.1 SII write request packet
	6.6.2.2 SII write confirmation packet

	6.6.3 Register for SII write Indications service
	6.6.3.1 Register for SII write Indications request packet
	6.6.3.2 Register for SII write confirmation packet

	6.6.4 Unregister from SII write indications service
	6.6.4.1 Unregister from SII write indications request
	6.6.4.2 Unregister from SII write confirmation packet

	6.6.5 SII write Indication service
	6.6.5.1 SII write indication packet
	6.6.5.2 SII write response packet

	6.7 Ethernet over EtherCAT (EoE)
	6.7.1 Register for frame indications service
	6.7.1.1 Register for frame indications request packet
	6.7.1.2 Register for frame indications confirmation packet

	6.7.2 Unregister from frame indications service
	6.7.2.1 Unregister from frame indications request packet
	6.7.2.2 Unregister from frame indications confirmation packet

	6.7.3 Ethernet send frame service
	6.7.3.1 Ethernet send frame request packet
	6.7.3.2 Ethernet send frame confirmation packet

	6.7.4 Ethernet frame received service
	6.7.4.1 Ethernet frame received indication packet
	6.7.4.2 Ethernet frame received response packet

	6.7.5 Register for IP parameter indications service
	6.7.5.1 Register for IP parameter indications request
	6.7.5.2 Register for IP parameter indications confirmation

	6.7.6 Unregister from IP parameter Indications service
	6.7.6.1 Unregister from IP parameter indications request packet
	6.7.6.2 Unregister from IP parameter indications confirmation packet

	6.7.7 Set IP parameter service
	6.7.7.1 Set IP parameter indication packet
	6.7.7.2 Set IP parameter response packet

	6.7.8 Get IP parameter service
	6.7.8.1 Get IP parameter indication packet
	6.7.8.2 Get IP parameter response packet

	6.8 File Access over EtherCAT (FoE)
	6.8.1 Set FoE options service
	6.8.1.1 Set FoE options request packet
	6.8.1.2 Set FoE options confirmation packet

	6.8.2 FoE register file service
	6.8.2.1 FoE register file indications request packet
	6.8.2.2 FoE register file indications confirmation packet

	6.8.3 FoE unregister file service
	6.8.3.1 FoE register file indications request packet
	6.8.3.2 FoE unregister file indications confirmation packet

	6.8.4 FoE write file service
	6.8.4.1 FoE write file indication packet
	6.8.4.2 FoE write file response packet

	6.8.5 FoE read file service
	6.8.5.1 FoE read file indication packet
	6.8.5.2 FoE read file indication packet

	6.8.6 FoE file written Service
	6.8.6.1 FoE file written indication packet
	6.8.6.2 FoE file written response packet

	6.8.7 FoE File Write Aborted Service
	6.8.7.1 FoE File Write Aborted Indication packet
	6.8.7.2 FoE File Write Aborted response packet

	6.9 ADS over EtherCAT (AoE)
	6.9.1 AoE register port service
	6.9.1.1 AoE register port request packet
	6.9.1.2 AoE register port confirmation packet

	6.9.2 AoE unregister port service
	6.9.2.1 AoE unregister port request packet
	6.9.2.2 AoE unregister port confirmation
	6.9.2.3 AoE unregister port confirmation packet

	6.10 Vendor-specific protocol over EtherCAT (VoE)
	6.10.1 Mailbox register type service
	6.10.1.1 Mailbox register type request packet
	6.10.1.2 Mailbox register type confirmation packet

	6.10.2 Mailbox unregister type service
	6.10.2.1 Mailbox unregister type request
	6.10.2.2 Mailbox unregister type request packet
	6.10.2.3 Mailbox unregister type confirmation packet

	6.10.3 Mailbox service
	6.10.3.1 Mailbox indication packet
	6.10.3.2 Mailbox response packet

	6.10.4 Mailbox send service
	6.10.4.1 Mailbox send request packet
	6.10.4.2 Mailbox send confirmation packet

	Chapter 7 Special topics
	7.1 For programmers
	7.2 Getting the receiver task handle of the process queue

	Chapter 8 Status and error codes
	8.1 Error LED
	8.2 SDO abort codes
	8.2.1 SDO abort codes

	8.3 Correspondence of SDO abort codes and status / error codes
	8.4 CoE emergency codes

	Appendix A: Appendix
	A.1 List of figures
	A.2 List of tables
	A.3 List of snippets
	A.4 Legal Notes
	A.5 Contacts

